Skip to main content
Log in

An Improved Tobit Kalman Filter with Adaptive Censoring Limits

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper deals with the Tobit Kalman filtering (TKF) process when the measurements are correlated and censored. The case of interval censoring, i.e., the case of measurements which belong to some interval with given censoring limits, is considered. Two improvements of the standard TKF process are proposed, in order to estimate the hidden state vectors. Firstly, the exact covariance matrix of the censored measurements is calculated by taking into account the censoring limits. Secondly, the probability of a latent (normally distributed) measurement to belong in or out of the uncensored region is calculated by taking into account the Kalman filter residual. The designed algorithm is tested using both synthetic and real data sets. The real data set includes human skeleton joints’ coordinates captured by the Microsoft Kinect II sensor. In order to cope with certain real-life situations that cause problems in human skeleton tracking, such as (self)-occlusions, closely interacting persons, etc., adaptive censoring limits are used in the proposed TKF process. Experiments show that the proposed method outperforms other filtering processes in minimizing the overall root-mean-square error for synthetic and real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Allik, The tobit Kalman filter: an estimator for censored data. Ph.D. thesis, University of Delaware (2014)

  2. B. Allik, C. Miller, M.J. Piovoso, R. Zurakowski, Estimation of saturated data using the tobit Kalman filter, in 2014 American Control Conference (IEEE) (2014), pp. 4151–4156

  3. B. Allik, C. Miller, M.J. Piovoso, R. Zurakowski, The tobit Kalman filter: An estimator for censored measurements. IEEE Trans. Control Syst. Technol. 24(1), 365–371 (2016)

    Article  Google Scholar 

  4. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  5. S. Asteriadis, A. Chatzitofis, D. Zarpalas, D.S. Alexiadis, P. Daras, Estimating human motion from multiple kinect sensors, in Proceedings of the 6th International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications (ACM) (2013), p. 3

  6. E.M. Berti, A.J.S. Salmerón, F. Benimeli, Kalman filter for tracking robotic arms using low cost 3d vision systems, in The Fifth International Conference on Advances in Computer–Human Interactions (2012), pp. 236–240

  7. F. Destelle, A. Ahmadi, N.E. O’Connor, K. Moran, A. Chatzitofis, D. Zarpalas, P. Daras, Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors, in 2014 22nd European Signal Processing Conference (EUSIPCO) (IEEE) (2014), pp. 371–375

  8. J. Deutscher, A. Blake, I. Reid, Articulated body motion capture by annealed particle filtering, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000. vol. 2 (IEEE) (2000), pp. 126–133

  9. Y. Du, W. Wang, L. Wang, Hierarchical recurrent neural network for skeleton based action recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1110–1118

  10. M. Edwards, R. Green, Low-latency filtering of kinect skeleton data for video game control, in Proceedings of the 29th International Conference on Image and Vision Computing New Zealand (ACM) (2014), pp. 190–195

  11. B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, L. Rochester, Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014)

    Article  Google Scholar 

  12. M.S. Grewal, Kalman Filtering (Springer, Berlin, 2011)

    Google Scholar 

  13. F. Gustafsson, G. Hendeby, Some relations between extended and unscented Kalman filters. IEEE Trans. Signal Process. 60(2), 545–555 (2012)

    Article  MathSciNet  Google Scholar 

  14. J.D. Hamilton, Time Series Analysis, vol. 2 (Princeton University Press, Princeton, 1994)

    MATH  Google Scholar 

  15. J. Hampshire, J.W. Strohbehn, Tobit maximum-likelihood estimation for stochastic time series affected by receiver saturation. IEEE Trans. Inf. Theory 38(2), 457–469 (1992)

    Article  Google Scholar 

  16. F. Han, H. Dong, Z. Wang, G. Li, F.E. Alsaadi, Improved tobit Kalman filtering for systems with random parameters via conditional expectation. Signal Process. 147, 33–45 (2018)

    Article  Google Scholar 

  17. A.C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter (Cambridge University Press, Cambridge, 1990)

    Book  Google Scholar 

  18. S.J. Julier, The scaled unscented transformation, in Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), vol. 6, (IEEE) (2002), pp. 4555–4559

  19. P.S. Kalekar, Time series forecasting using holt-winters exponential smoothing. Kanwal Rekhi Sch. Inf. Technol. 4329008, 1–13 (2004)

    Google Scholar 

  20. R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  21. A. Kar, Skeletal tracking using microsoft kinect. Methodology 1, 1–11 (2010)

    Google Scholar 

  22. M. Kinect, Skeletal joint smoothing white paper. https://msdn.microsoft.com/en-us/library/jj131429.aspx/. Accessed July 07 2016

  23. B.F. La Scala, R.R. Bitmead, Design of an extended Kalman filter frequency tracker. IEEE Trans. Signal Process. 44(3), 739–742 (1996)

    Article  Google Scholar 

  24. A.B.L. Larsen, S. Hauberg, K.S. Pedersen. Unscented Kalman filtering for articulated human tracking, in Scandinavian Conference on Image Analysis (Springer) (2011), pp. 228–237

  25. X.R. Li, Z. Zhao, Measuring estimator’s credibility: noncredibility index, in 2006 9th International Conference on Information Fusion (IEEE) (2006), pp. 1–8

  26. X.R. Li, Z. Zhao, V.P. Jilkov, Estimator’s credibility and its measures, in Proceedings of the IFAC 15th World Congress (2002)

  27. Z. Li, Z. Wei, Y. Yue, H. Wang, W. Jia, L.E. Burke, T. Baranowski, M. Sun, An adaptive hidden markov model for activity recognition based on a wearable multi-sensor device. J. Med. Syst. 39(5), 1–10 (2015)

    Article  Google Scholar 

  28. T.J. Lim, Y. Ma, The Kalman filter as the optimal linear minimum mean-squared error multiuser cdma detector. IEEE Trans. Inf. Theory 46(7), 2561–2566 (2000)

    Article  Google Scholar 

  29. K. Loumponias, N. Vretos, P. Daras, G. Tsaklidis, Using tobit Kalman filtering in order to improve the motion recorded by microsoft kinect, in Proceedings of the International workshop on applied probability (IWAP), Toronto, Canada (2016)

  30. K. Loumponias, N. Vretos, G. Tsaklidis, P. Daras, Using Kalman filter and tobit Kalman filter in order to improve the motion recorded by kinect sensor ii, in Proceedings of the 29th Panhellenic Statistics Conference, Naousa, Greece (2016), pp. 322–334

  31. B. Manjunath, S. Wilhelm, Moments calculation for the double truncated multivariate normal density (2009)

  32. C. Masreliez, R. Martin, Robust bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Autom. Control 22(3), 361–371 (1977)

    Article  MathSciNet  Google Scholar 

  33. R.G. Miller Jr., Survival Analysis, vol. 66 (Wiley, Hoboken, 2011)

    Google Scholar 

  34. A. Mobini, S. Behzadipour, M. Saadat Foumani, Accuracy of kinect’s skeleton tracking for upper body rehabilitation applications. Disabil Rehabil Assist Technol 9(4), 344–352 (2014)

    Article  Google Scholar 

  35. T.B. Moeslund, A. Hilton, V. Krüger, L. Sigal, Visual Analysis of Humans (Springer, Berlin, 2011)

    Book  Google Scholar 

  36. S. Moon, Y. Park, D.W. Ko, I.H. Suh, Multiple kinect sensor fusion for human skeleton tracking using Kalman filtering. Int. J. Adv. Robot. Syst. 13, 65 (2016)

    Article  Google Scholar 

  37. P. Moore, The estimation of the mean of a censored normal distribution by ordered variables. Biometrika 43(3/4), 482–485 (1956)

    Article  MathSciNet  Google Scholar 

  38. A. Savitzky, M.J. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  39. J. Tobin, Estimation of relationships for limited dependent variables. Econom. J. Econom. Soc. 26(1), 24–36 (1958)

    MathSciNet  MATH  Google Scholar 

  40. B.W. Turnbull, The empirical distribution function with arbitrarily grouped, censored and truncated data. J. R. Stat. Soc. Ser. B (Methodol.) 38, 290–295 (1976)

    MathSciNet  MATH  Google Scholar 

  41. J. Wang, Z. Liu, Y. Wu, J. Yuan, Learning actionlet ensemble for 3d human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 914–927 (2014)

    Article  Google Scholar 

  42. W.W.-S. Wei, Time Series Analysis (Addison-Wesley publ Reading, Boston, 1994)

    Google Scholar 

  43. G. Whitmore, F. Schenkelberg, Modelling accelerated degradation data using wiener diffusion with a time scale transformation. Lifetime Data Anal. 3(1), 27–45 (1997)

    Article  Google Scholar 

  44. X. Yang, Y. Tian, Super normal vector for human activity recognition with depth cameras. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1–1 (2016)

  45. C. Zhang, L. Zhang, Activity recognition in smart homes based on second-order hidden markov model. Int. J. Smart Home 7(6), 237–244 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Project (Horizon2020) ICT4Life under GA 690090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tsaklidis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The Censored Mean Value

In what follows, the proof of Proposition 2 is provided:

Proof of Proposition 2, Sect. 3.3

For a discrete random variable \( z_i \sim B(p_i) \) (Bernoulli distribution) in Lemma 1, it is derived that

$$\begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}(x,z_i) = {{\,\mathrm{\mathbb {E}}\,}}(x|z_i=1)\cdot p_i. \end{aligned}$$
(42)

The censored measurement, \( y_i \), can be written in terms of Bernoulli distributions; therefore, the censored mean value is written by (42) as,

$$\begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}(y_i)=\sum _{j=1}^{3^{n-1}}\!{{\,\mathrm{\mathbb {E}}\,}}(y^*_i|a_i<y^*_i<b_i, R_j)P((a_i,b_i),R_j)+ a_iP(y^*_i\le a_i)+b_iP(y^*_i \ge b_i), \qquad \end{aligned}$$
(43)

where the first term is the sum of all possible mean values of \( {{\,\mathrm{\mathbb {E}}\,}}(y_i|a_i<y_i<b_i)\) given that the rest variables lie in a region \( R_j = [(L_1,U_1),\ldots ,(L_{i-1},U_{i-1}),(L_{i+1},U_{i+1}),\ldots ,(L_n,U_n)] \), where

$$\begin{aligned} (L_k,U_k)= {\left\{ \begin{array}{ll} (-\infty ,a_k) \quad or\\ (a_k, b_k) \quad \; \; \; or\\ (b_k, \infty ) \end{array}\right. } \end{aligned}$$

where j=1,...,\( 3^{n-1} \). \(P((a_i,b_i),R_j) \) denotes the probability of variable \( \mathbf{y }^* \) to lie in a region \([(a_i,b_i),R_j]. \) It is derived by (5) that

$$\begin{aligned} \begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}(y_i)&= \sum _{j=1}^{3^{n-1}}\Big (\mu _i + \sum _{k=1}^n \sigma _{i,k}\big (F_{k}(L_k)-F_{k}(U_k)\big )_{R_j} \Big )P(R_j)+ a_iP(y^*_i\le a_i)\\&\quad + b_iP(y^*_i \ge b_i)\\&= \sum _{k=1}^n\sum _{j=1}^{3^{n-1}}\sigma _{i,k}\big (F_{k}(L_k)-F_{k}(U_k)\big )_{R_j}P(R_j)+\mu _iP(a_i<y^*_i<b_i)\\&\quad + a_iP(y^*_i\le a_i) + b_iP(y^*_i \ge b_i), \end{aligned} \end{aligned}$$
(44)

where \( \big (F_{k}(L_k)-F_{k}(U_k)\big )_{R_j} \) is the difference of functions (6) given that the variable \( \mathbf{y }^* \) lies in the region \( R_j \cup (a_i,b_i) \). In the case where \( k \ne i \), it is derived that:

$$\begin{aligned} \sum _{j=1}^{3^{n-1}}\sigma _{i,k}\big (F_{k}(L_k)-F_{k}(U_k)\big )_{R_j}P(R_j)= & {} \sum _{j=1}^{3^{n-2}}\sigma _{i,k}\big (F_{k}(-\infty )-F_{k}(a_k)\big )_{V_j}P(V_j)\nonumber \\&+\sum _{j=1}^{3^{n-2}}\sigma _{i,k}\big (F_{k}(a_k)-F_{k}(b_k)\big )_{V_j}P(V_j)\nonumber \\&+\sum _{j=1}^{3^{n-2}}\sigma _{i,k}\big (F_{k}(b_k)-F_{k}(\infty )\big )_{V_j}P(V_j)=0, \nonumber \\ \end{aligned}$$
(45)

where \(V_j \) is the region

$$\begin{aligned}{}[(L_1,U_1),\ldots ,(L_{k-1},U_{k-1}),(L_{k+1},U_{k+1}),\ldots ,(a_i,b_i),\ldots ,(L_n,U_n)]. \end{aligned}$$

In the case where \( k = i \), it is derived that,

$$\begin{aligned}&\sum _{j=1}^{N}\sigma _{i,k}\big (F_{k}(L_k)-F_{k}(U_k)\big )_{R_j}P(R_j)\nonumber \\&\quad \begin{aligned}&=\sum _{j=1}^{N}\sigma _{i,i}\big (F_{i}(a_i)-F_{i}(b_i)\big )_{R_j}P(R_j)\\&=\sigma _{i,i}\big (f_{i}(a_i)-f_{i}(b_i)\big ), \end{aligned} \end{aligned}$$
(46)

where \( f_i(y^*_i) \) is the normal distribution of \( y^*_i \sim N(\mu _i, \sigma _{i,i}) \). Thus, by (44)-(46) arises

$$\begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}(y_i)=\mu _iP(a_i<y^*_i<b_i) + \sigma _{i,i}(f_i(a_i)-f_i(b_i)) +a_iP(y^*_i\le a_i) + b_iP(y^*_i \ge b_i). \nonumber \\ \end{aligned}$$
(47)

\(\square \)

Appendix B: The Censored Covariance Matrix

In what follows, the proof of Proposition 3 is provided:

Proof of Proposition 3, Sect. 3.3

In the same way as for the censored mean (“Appendix A”), it is proved that the second moment of \( y_i \) depends on the censoring limits {\( a_i \), \( b_i \)}. Therefore, it is derived by Lemma 1 that

$$\begin{aligned} \begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}\big (y_i^2\big ) = {{\,\mathrm{\mathbb {E}}\,}}(y^{*2}_i|a_i<y^*_i<b_i)P(a_i<y^*_i<b_i) + a^2_iP(y^*_i \le a_i) + b^2_iP(y^*_i \ge b_i), \end{aligned} \end{aligned}$$

where the first term [31] is equal with

$$\begin{aligned} \begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}(y^{*2}_i|a_i<y^*_i<b_i)&= \sigma _{i,i} + \mu _i^2 + 2\mu _i\sigma _{i,i}\frac{f_i(a_i)-f(b_i) }{P(a_i<y^*_i<b_i)} \\&\quad +\sigma _{i,i}\frac{(a_i-\mu _i)f_i(a_i)- (b_i-\mu _i)f_i(b_i) }{P(a_i<y^*_i<b_i)}. \end{aligned} \end{aligned}$$
(48)

Therefore, it is derived by (48) that,

$$\begin{aligned} \begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}\big (y_i^2\big )&= (\sigma _{i,i} + \mu _i^2)P(a_i<y^*_i<b_i) \\&\quad + \sigma _{i,i}\big ((a_i-\mu _i)f_i(a_i)- (b_i-\mu _i)f_i(b_i)\big )\\&\quad + 2\mu _i\sigma _{i,i}(f_i(a_i)-f(b_i)) + a^2_iP(y^*_i \le a_i) + b^2_iP(y^*_i \ge b_i). \end{aligned} \end{aligned}$$
(49)

Finally, the censored variance is given by

$$\begin{aligned} \begin{aligned} Var(y_i)&= \mu _i^2(1-P_{un}^i)P_{un}^i + \sigma _{i,i}P_{un}^i + a^2_i(1-P_{a}^i)P_{a}^i \\&\quad + b^2_i(1-P_{b}^i)P_{b}^i-2a_ib_iP_{a}^iP_{b}^i - \sigma _{i,i}^2(f(a_i)-f(b_i))\\&\quad +2\mu _i\sigma _{i,i}(f_i(a_i)-f(b_i))(1-P_{un}^i)\\&\quad +\sigma _{i,i}\big ((a_i-\mu _i)f_i(a_i)- (b_i-\mu _i)f_i(b_i)\big ) \\&\quad -2\Big ( \mu _iP_{un}^i + \sigma _{i,i}\big (f_i(a_i)-f(b_i)\big )\Big )\Big (a_iP_{a}^i + b_iP_{b}^i \Big ),\\ \end{aligned} \end{aligned}$$
(50)

where \( P_{un}^i = P(a_i<y^*_i<b_i) \), \( P_{a}^i= P(y^*_i \le a_i)\) and \( P_{b}^i = P(y^*_i \ge b_i) \).

The expectation value of \( y_i \cdot y_j \) is written by Lemma 1 as:

$$\begin{aligned} \begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}(y_{i}y_{j})&=a_ib_j P(1) +b_ib_j P(3) + a_ia_jP(7) + b_ia_jP(9)\\&\quad + b_j\sum _{k=1}^{3^{n-2}}{{\,\mathrm{\mathbb {E}}\,}}(y^*_{i}|a_i< y^*_{i}<b_i, y^*_j \ge b_j, G_{k})P(G_{k})\\&\quad + a_i\sum _{k=1}^{3^{n-2}}{{\,\mathrm{\mathbb {E}}\,}}(y^*_{j}|a_j< y^*_{j}<b_j, y^*_i \le a_i, G_{k})P(G_{k})\\&\quad +\sum _{k=1}^{3^{n-2}}{{\,\mathrm{\mathbb {E}}\,}}(y_{i}y^*_{j}|a_i< y^*_{i}< b_i, a_j< y^*_{j}<b_j, G_{k})P(G_{k})\\&\quad + b_i\sum _{k=1}^{3^{n-2}}{{\,\mathrm{\mathbb {E}}\,}}(y^*_{j}|a_j< y^*_{j}<b_j, y^*_i \ge b_i, G_{k})P(G_{k})\\&\quad + a_j\sum _{k=1}^{3^{n-2}}{{\,\mathrm{\mathbb {E}}\,}}(y^*_{i}|a_i< y^*_{i} <b_i, y^*_j \le a_j, G_{k})P(G_{k}),\\ \end{aligned} \end{aligned}$$
(51)

where

$$\begin{aligned} \begin{aligned}&P(1)= P(y^*_i\le a_i, y^*_j\ge b_j),P(3)= P(y^*_i\ge b_i, y^*_j\ge b_j),\\&P(7)= P(y^*_i\le a_i, y^*_j\le a_j), P(9)= P(y^*_i\ge b_i, y^*_j\le a_j), \end{aligned} \end{aligned}$$

and \( G_k \) for \( k=1,\ldots ,3^{n-2} \) denote a region (as in the case of the censored mean) where the multi-variable, \( \mathbf{y }^*_{-i-j} \), lies on.

Concerning the last five terms of (51), it is proved (as in case of second moment) that they depend only on the censoring limits {\( a_i \), \( b_i \), \( a_j \), \( b_j \)}; thus, (51) can be written as

$$\begin{aligned} \begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}(y_{i}y_{j})&=a_ib_j P(1) +b_ib_j P(3) + a_ia_jP(7) + b_ia_jP(9)\\&\quad + b_j{{\,\mathrm{\mathbb {E}}\,}}(y^*_{i}|a_i< y^*_{i}<b_i, y^*_j \ge b_j)P(2)\\&\quad + a_i{{\,\mathrm{\mathbb {E}}\,}}(y^*_{j}|a_j< y^*_{j}<b_j, y^*_i \le a_i)P(4)\\&\quad +{{\,\mathrm{\mathbb {E}}\,}}(y^*_{i}y^*_{j}|a_i< y^*_{i}< b_i, a_j< y^*_{j}<b_j)P(5)\\&\quad + b_i{{\,\mathrm{\mathbb {E}}\,}}(y^*_{j}|a_j< y^*_{j}<b_j, y^*_i \ge b_i)P(6)\\&\quad + a_j{{\,\mathrm{\mathbb {E}}\,}}(y^*_{i}|a_i< y^*_{i} <b_i, y^*_j \le a_j)P(8),\\ \end{aligned} \end{aligned}$$
(52)

where

$$\begin{aligned} \begin{aligned}&P(2)= P(a_i<y^*_i< b_i, y^*_j\ge b_j),\\&P(4)= P(y^*_i\le a_i, a_j<y^*_j<b_j),\\&P(5)= P(a_i<y^*_i<b_i, a_j<y^*_j< b_j),\\&P(6)= P(y^*_i\ge b_i, a_j<y^*_j< b_j),\\&P(8)= P(a_i<y^*_i< b_i, y^*_j\le a_j). \end{aligned} \end{aligned}$$

At this point, it should be noted that the truncated moments \( {{\,\mathrm{\mathbb {E}}\,}}(y^*_{i}|\cdot ) \) and \( {{\,\mathrm{\mathbb {E}}\,}}(y^*_{i}y^*_{j}|\cdot ) \) in (52) are calculated by (5) and (5), respectively. Although the functions (6), (7) in our case (censoring measurements) are defined only for the variables \( y^*_i \) and \(y^*_j \), i.e.,:

$$\begin{aligned} F_i(x)=\frac{\int _{a_j}^{b_j}f_{Y^*_i,Y^*_j}(x,y^*_j)dy^*_{j}}{P(a_j<y^*_j<b_j, a_i<y^*_i<b_i)}, \end{aligned}$$

and

$$\begin{aligned} F_{i,j}(x,y)=\frac{f_{Y^*_i,Y^*_j}(x,y)}{P(a_j<y^*_j<b_j, a_i<y^*_i<b_i)}. \end{aligned}$$

Therefore, the covariance matrix can be defined by the terms (47), (50) and (52). \(\square \)

Appendix C: Evaluation of the Probabilities of the Latent Measurement to Belong to the Censored or Uncensored Region

In what follows, the proofs for (13)–(15) are provided.

The mean of the latent measurement \( \mathbf{y }^*_{k} \) given the saturated measurement \(\mathbf{y }_{k-1} \) is

$$\begin{aligned} \mathbf{m }_k={{\,\mathrm{\mathbb {E}}\,}}(\mathbf{H }_k\mathbf{x }_k+\mathbf{v }_k|\mathbf{y }_{k-1})=\mathbf{H }_k{{\,\mathrm{\mathbb {E}}\,}}(\mathbf{x }_k|\mathbf{y }_{k-1})=\mathbf{H }_k\hat{\mathbf{x }}^-_{k}. \end{aligned}$$
(53)

The covariance matrix of \( \mathbf{y }^*_{k}-\mathbf{H }_k\hat{\mathbf{x }}^-_{k} \) is

$$\begin{aligned} \begin{aligned} \mathbf{S }_k=\mathrm {Cov}(\mathbf{y }^*_{k}-\mathbf{H }_k\hat{\mathbf{x }}^-_{k})&=\mathrm {Cov}(\mathbf{H }_k\mathbf{x }_k+\mathbf{v }_k-\mathbf{H }_k\hat{\mathbf{x }}^-_{k})\\&=\mathrm {Cov}\big (\mathbf{H }_k(\mathbf{x }_k-\hat{\mathbf{x }}^-_{k}))+\mathrm {Cov}(\mathbf{v }_k) \end{aligned} \end{aligned}$$

thus,

$$\begin{aligned} \mathbf{S }_{k}=\mathbf{H }_k\mathbf{P }^-_{k}\mathbf{H }_k^T+\mathbf{R }_k. \end{aligned}$$
(54)

By (53) and (54), it is clear that \(\mathbf{y }^*_{k}|\mathbf{y }_{k-1}\sim ~N(\mathbf{m }_k, \mathbf{S }_k)\). The probability \( P^i_{\mathbf{a },k} \) of the \( i{\mathrm{th}} \) component of the latent measurement \( \mathbf{y }^*_k \) to be equal or less than \( a_i \) is

$$\begin{aligned} P^i_{\mathbf{a },k}= P( y^*_{k,i}\le a_i )= & {} P\Bigg (\frac{y^*_{k,i}-m_{k,i}}{\sqrt{s_{(i,i),k}}}\le \frac{a_i-m_{k,i}}{\sqrt{s_{(i,i),k}}} \Bigg ) \nonumber \\= & {} \varPhi \Bigg ( \frac{a_i-m_{k,i}}{\sqrt{s_{(i,i),k}}} \Bigg ). \end{aligned}$$
(55)

Following the same procedure, the probability \( P^i_{\mathbf{b },k} \) of the \( i{\mathrm{th}} \) component of the latent measurement \( \mathbf{y }^*_k \) to be equal or bigger than \( b_i \) is

$$\begin{aligned} P^i_{\mathbf{b },k}=1-\varPhi \Bigg ( \frac{b_i-m_{k,i}}{\sqrt{s_{(i,i),k}}} \Bigg ). \end{aligned}$$
(56)

Finally, the probability of the \( i{\mathrm{th}} \) component of the latent measurement \( \mathbf{y }^*_k \) to lie in the uncensored region \( (a_i, b_i) \) is

$$\begin{aligned} P^i_{un,k}=1-P^i_{\mathbf{a },k}-P^i_{\mathbf{b },k} . \end{aligned}$$
(57)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loumponias, K., Vretos, N., Tsaklidis, G. et al. An Improved Tobit Kalman Filter with Adaptive Censoring Limits. Circuits Syst Signal Process 39, 5588–5617 (2020). https://doi.org/10.1007/s00034-020-01422-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01422-w

Keywords

Navigation