Skip to main content
Log in

\(\varepsilon \)-Embedding Model Reduction Method for Time-Delay Differential Algebra Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new model order reduction (MOR) method for large-scale time-delay differential algebra systems is proposed herein. The presented MOR algorithm is based on parametric moment matching and \(\varepsilon \)-embedding. By selecting an appropriate projection matrix, this process generates reduced-order models that preserve the structure of the original time-delay differential algebra system. Additionally, moment-matching results and error estimations are provided. Finally, two numerical circuits are tested to illustrate the effectiveness of the proposed MOR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Achar, M.S. Nakhla, Simulation of high-speed interconnects. Proc. IEEE 89(5), 693–728 (2002)

    Article  Google Scholar 

  2. U. Baur, C. Beattie, P. Benner, Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33(5), 2489–2518 (2011)

    Article  MathSciNet  Google Scholar 

  3. U. Baur, P. Benner, Model reduction for parametric systems using balanced truncation and interpolation. at-Automatisierungstechnik 57, 411–420 (2009)

    Article  Google Scholar 

  4. P. Benner, L. Feng, A Robust Algorithm for Parametric Model Order Reduction Based on Implicit Moment Matching. Reduced Order Methods for Modeling and Computational Reduction (Springer International Publishing, Berlin, 2014), pp. 159–185

    MATH  Google Scholar 

  5. J. Cullum, A. Ruehli, T. Zhang, A method for reduced-order modeling and simulation of large interconnect circuits and its application to PEEC models with retardation. IEEE Trans. Circuits Syst. II Analog Digital Signal Process. 47(4), 261–273 (2000)

    Article  Google Scholar 

  6. L. Daniel, O.C. Siong, L.S. Chay, A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(5), 678–693 (2004)

    Article  Google Scholar 

  7. I.G. de La Vega, R. Riaza, Hybrid analysis of nonlinear circuits: DAE models with indices zero and one. Circuits Syst. Signal Process. 32(5), 2065–2095 (2013)

    Article  MathSciNet  Google Scholar 

  8. J. Elias, T. Damm, W. Michiels, Model reduction of time-delay systems using position balancing and delay Lyapunov equations. Math. Control Signals Syst. 25(2), 147–166 (2013)

    Article  MathSciNet  Google Scholar 

  9. L.H. Feng, E.B. Rudnyi, J.G. Korvink, Preserving the film coefficient as a parameter in the compact thermal model for fast electrothermal simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(12), 1838–1847 (2005)

    Article  Google Scholar 

  10. R.W. Freund, Krylov subspace methods for reduced order modeling in circuit simulation. J. Comput. Appl. Math. 123(1–2), 395–421 (2000)

    Article  MathSciNet  Google Scholar 

  11. A. Ghafoor, M. Imran, Passivity preserving frequency weighted model order reduction technique. Circuits Syst. Signal Process. 36, 4388–4400 (2017)

    Article  MathSciNet  Google Scholar 

  12. E. J. Grimme, Krylov projection methods for model reduction. Ph.D. Thesis, Department of Electrical Engineering, University of Illinois at Urbana Champaign (1997)

  13. Y.L. Jiang, Model Order Reduction Methods, 109–115 (Science Press, Beijing, 2010)

    Google Scholar 

  14. Y.L. Jiang, C.Y. Chen, P. Yang, Balanced truncation with \(\varepsilon \)-embedding for coupled dynamical systems. IET Circuits Devices Syst. 12(3), 271–279 (2017)

    Article  Google Scholar 

  15. Y.L. Jiang, H.B. Chen, Time domain model order reduction of general orthogonal polynomials for linear input–output systems. IEEE Trans. Autom. Control 57(2), 330–343 (2012)

    Article  MathSciNet  Google Scholar 

  16. Y.L. Jiang, K.L. Xu, \(H_2\) optimal reduced models of general MIMO LTI systems via the cross Gramian on the Stiefel manifold. J. Frankl. Inst. 354(8), 3210–3224 (2017)

    Article  Google Scholar 

  17. Y.L. Jiang, K.L. Xu, C.Y. Chen, Parameterized model order reduction for linear DAE systems via epsilon-embedding technique. J. Frankl. Inst. 356(5), 2901–2918 (2019)

    Article  Google Scholar 

  18. K. Mohaghegh, Linear and nonlinear model order reduction for numerical simulation of electric circuits. Ph.D. Thesis, University of Wuppertal, Germany (2010)

  19. K. Mohaghegh, R. Pulch, M. Striebel, J. ter Maten, Model order reduction for semi-explicit systems of differential algebraic equations, in Proceedings Mathmod 09 Vienna (2009)

  20. J.R. Phillips, L.M. Silveira, Poor man’s TBR: a simple model reduction scheme. IEEE Trans. Comput. Aided Des. 24(1), 43–55 (2005)

    Article  Google Scholar 

  21. E. Rasekh, A. Dounavis, Multiorder arnoldi approach for model order reduction of PEEC models with retardation. IEEE Trans. Compon. Packag. Manuf. Technol. 2(10), 1629–1636 (2012)

    Article  Google Scholar 

  22. S. Reich, On a geometrical interpretation of differential-algebraic equations. Circuits Syst. Signal Process. 9(4), 367–382 (1990)

    Article  MathSciNet  Google Scholar 

  23. M. Saadvandi, K. Meerbergen, E. Jarlebring, On dominant poles and model reduction of second order time-delay systems. Appl. Numer. Math. 62(1), 21–34 (2012)

    Article  MathSciNet  Google Scholar 

  24. M.G. Safonov, R.Y. Chiang, A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34(7), 729–733 (2002)

    Article  MathSciNet  Google Scholar 

  25. E.R. Samuel, L. Knockaert, T. Dhaene, Model order reduction of time-delay systems using a Laguerre expansion technique. IEEE Trans. Circuits Syst. I Regul. Pap. 61(6), 1815–1823 (2014)

    Article  Google Scholar 

  26. T. Stykel, Balanced truncation model reduction for descriptor systems. PAMM 3(1), 5–8 (2010)

    Article  MathSciNet  Google Scholar 

  27. W. Tseng, C. Chen, E. Gad, M. Nakhla, R. Achar, Passive order reduction for RLC circuits with delay elements. IEEE Trans. Adv. Packag. 30(4), 830–840 (2007)

    Article  Google Scholar 

  28. X. Wang, Q. Wang, Z. Zhang, Q. Chen, N. Wong, Balanced truncation for time-delay systems via approximate Gramians, in 16th Asia and South Pacific Design Automation Conference (ASP-DAC), Yokohama, Japan, pp. 55–60 (2011)

  29. Z.H. Xiao, Y.L. Jiang, Dimension reduction for second-order systems by general orthogonal polynomials. Math. Comput. Model Dyn. 20(4), 414–432 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Lin Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the Natural Science Foundation of China (NSFC) under Grant 61663043 and 11871393.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, ZY., Jiang, YL. \(\varepsilon \)-Embedding Model Reduction Method for Time-Delay Differential Algebra Systems. Circuits Syst Signal Process 39, 5390–5405 (2020). https://doi.org/10.1007/s00034-020-01426-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01426-6

Keywords

Navigation