Skip to main content
Log in

An Interfacial Dynamic Crosslinking Approach toward Catalyst-free and Mechanically Robust Elastomeric Vitrimer with a Segregated Structure

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Elastomeric vitrimers with covalent adaptable networks are promising candidates to overcome the intrinsic drawbacks of conventional covalently-crosslinked elastomers; however, most elastomeric vitrimers show poor mechanical properties and require the addition of exogenous catalysts. Herein, we fabricate a catalyst-free and mechanically robust elastomeric vitrimer by constructing a segregated structure of sodium alginate (SA) in the continuous matrix of epoxidized natural rubber (ENR), and further crosslinking the composite by exchangeable hydroxyl ester bonds at the ENR-SA interfaces. The manufacturing process of the elastomeric vitrimer is facile and environmentally friendly without hazardous solvents or exogenous catalysts, as the abundant hydroxyl groups of the segregated SA phase can act as catalyst to activate the crosslinking reaction and promote the dynamic transesterification reaction. Interestingly, the segregated SA structure bears most of the load owing to its high modulus and small deformability, and thus ruptures preferentially upon deformation, leading to efficient energy dissipation. Moreover, the periodic stiffness fluctuation between rigid segregated SA phase and soft ENR matrix is beneficial to the crack-resisting. As a result, the elastomeric vitrimer manifests exceptional combination of catalyst-free, defect-tolerance, high tensile strength and toughness. In addition, the elastomeric vitrimer also exhibits multi-shape memory behavior which may further broaden its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guo, B.; Tang, Z.; Zhang, L. Transport performance in novel elastomer nanocomposites: mechanism, design and control. Prog. Polym. Sci. 2016, 61, 29–66.

    Article  CAS  Google Scholar 

  2. Li, H.; Yang, L.; Weng, G.; Xing, W.; Wu, J.; Huang, G. Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes. J. Mater. Chem. A 2015, 3, 22385–22392.

    Article  CAS  Google Scholar 

  3. Wei, T.; Lei, L.; Kang, H.; Qiao, B.; Wang, Z.; Zhang, L.; Coates, P.; Hua, K. C.; Kulig, J. Tough bio-based elastomer nanocomposites with high performance for engineering applications. Adv. Eng. Mater. 2012, 14, 112–118.

    Article  CAS  Google Scholar 

  4. Deng, F.; Ito, M.; Noguchi, T.; Wang, L.; Ueki, H.; Niihara, K. I.; Kim, Y. A.; Endo, M.; Zheng, Q. S. Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites. ACS Nano 2011, 5, 3858–3866.

    Article  CAS  PubMed  Google Scholar 

  5. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.

    Article  Google Scholar 

  6. Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 2016, 7, 30–38.

    Article  CAS  PubMed  Google Scholar 

  7. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silka-like malleable materials from permanent organic networks. Science 2011, 334, 965.

    Article  CAS  PubMed  Google Scholar 

  8. Krishnakumar, B.; Sanka, R. V. S. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers. Chem. Eng. J. 2020, 385, 123820.

    Article  CAS  Google Scholar 

  9. Ling, F.; Liu, Z.; Chen, M.; Wang, H.; Zhu, Y.; Ma, C.; Wu, J.; Huang, G. Compatibility driven self-strengthening during the radical-responsive remolding process of poly-isoprene vitrimers. J. Mater. Chem. A 2019, 7, 25324–25332.

    Article  CAS  Google Scholar 

  10. Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667.

    Article  CAS  PubMed  Google Scholar 

  11. Saed, M. O.; Gablier, A.; Terentejv, E. M. Liquid crystalline vitrimers with full or partial boronic-ester bond exchange. Adv. Funct. Mater. 2019, 1906458.

  12. Cromwell, O. R.; Chung, J.; Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 2015, 137, 6492–6495.

    Article  CAS  PubMed  Google Scholar 

  13. Obadia, M. M.; Mudraboyina, B. P.; Serghei, A.; Montarnal, D.; Drockenmuller, E. Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C-N bonds. J. Am. Chem. Soc. 2015, 137, 6078–6083.

    Article  CAS  PubMed  Google Scholar 

  14. Hendriks, B.; Waelkens, J.; Winne, J. M.; Du Prez, F. E. Poly(thioether) vitrimers via transalkylation of trialkylsulfonium salts. ACS Macro Lett. 2017, 6, 930–934.

    Article  CAS  Google Scholar 

  15. Rottger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolay, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356, 62.

    Article  PubMed  CAS  Google Scholar 

  16. Breuillac, A.; Kassalias, A.; Nicolay, R. Polybutadiene vitrimers based on dioxaborolane chemistry and dual networks with static and dynamic cross-links. Macromolecules 2019, 52, 7102–7113.

    Article  CAS  Google Scholar 

  17. Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H. J.; Zhang, W. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Adv. Mater. 2016, 28, 2904–2909.

    Article  CAS  PubMed  Google Scholar 

  18. Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 2014, 26, 3938–3942.

    Article  CAS  PubMed  Google Scholar 

  19. Lu, Y. X.; Tournilhac, F.; Leibler, L.; Guan, Z. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 2012, 134, 8424–8427.

    Article  CAS  PubMed  Google Scholar 

  20. Cao, L.; Fan, J.; Huang, J.; Chen, Y. A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J. Mater. Chem. A 2019, 7, 4922–4933.

    Article  CAS  Google Scholar 

  21. Zhang, H.; Cai, C.; Liu, W.; Li, D.; Zhang, J.; Zhao, N.; Xu, J. Recyclable polydimethylsiloxane network crosslinked by dynamic transesterification reaction. Sci. Rep. 2017, 7, 11833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang, G.; Zhou, X.; Liang, K.; Guo, B.; Li, X.; Wang, Z.; Zhang, L. Mechanically robust and recyclable EPDM rubber composites by a green cross-linking strategy. ACS Sustain. Chem. Eng. 2019, 7, 11712–11720.

    Article  CAS  Google Scholar 

  23. Argyle, M.; Bartholomew, C. Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 2015, 5, 145–269.

    Article  CAS  Google Scholar 

  24. Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. Polylactide vitrimers. ACS Macro Lett. 2014, 3, 607–610.

    Article  CAS  Google Scholar 

  25. Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 2012, 1, 789–792.

    Article  CAS  Google Scholar 

  26. Legrand, A.; Soulié-Ziakovic, C. Silica-epoxy vitrimer nanocomposites. Macromolecules 2016, 49, 5893–5902.

    Article  CAS  Google Scholar 

  27. Yu, K.; Shi, Q.; Dunn, M.; Wang, T.; Qi, H. Carbon fiber reinforced thermoset composite with near 100% recyclability. Adv. Funct. Mater. 2016, 26, 6098–6106.

    Article  CAS  Google Scholar 

  28. Spiesschaert, Y.; Guerre, M.; Imbernon, L.; Winne, J. M.; Du Prez, F. Filler reinforced polydimethylsiloxane-based vitrimers. Polymer 2019, 172, 239–246.

    Article  CAS  Google Scholar 

  29. Wu, S.; Yang, Z.; Fang, S.; Tang, Z.; Liu, F.; Guo, B. Malleable organic/inorganic thermosetting hybrids enabled by exchangeable silyl ether interfaces. J. Mater. Chem. A 2019, 7, 1459–1467.

    Article  CAS  Google Scholar 

  30. Tang, Z.; Liu, Y.; Guo, B.; Zhang, L. Malleable, mechanically strong, and adaptive elastomers enabled by interfacial exchangeable bonds. Macromolecules 2017, 50, 7584–7592.

    Article  CAS  Google Scholar 

  31. Liu, Y.; Tang, Z.; Chen, Y.; Zhang, C.; Guo, B. Engineering of β-hydroxyl esters into elastomer-nanoparticle interface toward malleable, robust, and reprocessable vitrimer composites. ACS Appl. Mater. Interfaces 2018, 10, 2992–3001.

    Article  CAS  PubMed  Google Scholar 

  32. Han, J.; Liu, T.; Hao, C.; Zhang, S.; Guo, B.; Zhang, J. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer. Macromolecules 2018, 51, 6789–6799.

    Article  CAS  Google Scholar 

  33. Qiu, M.; Wu, S.; Tang, Z.; Guo, B. Exchangeable interfacial crosslinks towards mechanically robust elastomer/carbon nanotubes vitrimers. Compos. Sci. Technol. 2018, 165, 24–30.

    Article  CAS  Google Scholar 

  34. Qiu, M.; Wu, S.; Fang, S.; Tang, Z.; Guo, B. Sustainable, recyclable and robust elastomers enabled by exchangeable interfacial cross-linking. J. Mater. Chem. A 2018, 6, 13607–13612.

    Article  CAS  Google Scholar 

  35. Liu, W.; Schmidt, D.; Reynaud, E. Catalyst selection, creep, and stress relaxation in high-performance epoxy vitrimers. Ind. Eng. Chem. Res. 2017, 56, 2667–2672.

    Article  CAS  Google Scholar 

  36. Demongeot, A.; Groote, R.; Goossens, H.; Hoeks, T.; Tournilhac, F.; Leibler, L. Cross-linking of poly(butylene terephthalate) by reactive extrusion using Zn(II) epoxy-vitrimer chemistry. Macromolecules 2017, 50, 6117–6127.

    Article  CAS  Google Scholar 

  37. Long, R.; Qi, H.; Dunn, M. Modeling the mechanics of covalently adaptable polymer networks with temperature-dependent bond exchange reactions. Soft Matter 2013, 9, 4083–4096.

    Article  CAS  Google Scholar 

  38. Wu, J.; Cai, L.-H.; Weitz, D. A. Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv. Mater. 2017, 29, 1702616.

    Article  CAS  Google Scholar 

  39. Zhu, Y.; Shen, Q.; Wei, L.; Fu, X.; Huang, C.; Zhu, Y.; Zhao, L.; Huang, G.; Wu, J. Ultra-tough, strong, and defect-tolerant elastomers with self-healing and intelligent-responsive abilities. ACS Appl. Mater. Interfaces 2019, 11, 29373–29381.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 2014, 10, 672–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haque, M. A.; Kurokawa, T.; Kamita, G.; Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 2011, 44, 8916–8924.

    Article  CAS  Google Scholar 

  42. Cui, K.; Sun, T. L.; Liang, X.; Nakajima, K.; Ye, Y. N.; Chen, L.; Kurokawa, T.; Gong, J. P. Multiscale energy dissipation mechanism in tough and self-healing hydrogels. Phys. Rev. Lett. 2018, 121, 185501.

    Article  PubMed  Google Scholar 

  43. Huang, Y.; King, D.; Cui, W.; Taolin, S.; Guo, H.; Kurokawa, T.; Brown, H.; Hui, C. Y.; Gong, J. Superior fracture resistance of fiber reinforced polyampholyte hydrogels achieved by extraordinarily large energy-dissipative process zones. J. Mater. Chem. A 2019, 13431–13440.

    Google Scholar 

  44. Egan, P.; Sinko, R.; Leduc, P.; Keten, S. The role of mechanics in biological and bio-inspired systems. Nat. Commun. 2015, 6, 7418.

    Article  PubMed  Google Scholar 

  45. Peterlik, H.; Roschger, P.; Klaushofer, K.; Fratzl, P. From brittle to ductile fracture of bone. Nat. Mater. 2006, 5, 52–55.

    Article  CAS  PubMed  Google Scholar 

  46. Yang, W.; Sherman, V. R.; Gludovatz, B.; Schaible, E.; Stewart, P.; Ritchie, R. O.; Meyers, M. A. On the tear resistance of skin. Nat. Commun. 2015, 6, 6649.

    Article  CAS  PubMed  Google Scholar 

  47. Aizenberg, J.; Weaver, J.; Thanawala, M.; Sundar, V.; Morse, D.; Fratzl, P. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 2005, 309, 275–278.

    Article  CAS  PubMed  Google Scholar 

  48. Fratzl, P.; Gupta, H.; Fischer, F.; Kolednik, O. Hindered crack propagation in materials with periodically varying Young’s modulus—lessons from biological materials. Adv. Mater. 2007, 19, 2657–2661.

    Article  CAS  Google Scholar 

  49. Beese, A. M.; An, Z.; Sarkar, S.; Nathamgari, S. S. P.; Espinosa, H. D.; Nguyen, S. T. Defect-tolerant nanocomposites through bio-inspired stiffness modulation. Adv. Funct. Mater. 2014, 24, 2883–2891.

    Article  CAS  Google Scholar 

  50. Feng, Z.; Hu, J.; Zuo, H.; Ning, N.; Zhang, L.; Yu, B.; Tian, M. Photothermal-induced self-healable and reconfigurable shape memory bio-based elastomer with recyclable ability. ACS Appl. Mater. Interfaces 2019, 11, 1469–1479.

    Article  CAS  PubMed  Google Scholar 

  51. Yang, Z.; Wang, Q.; Wang, T. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites. ACS Appl. Mater. Interfaces 2016, 8, 21691–21699.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, S.; Liu, T.; Cheng, H.; Wang, L.; Han, J.; Liu, H.; Zhang, J. Preparation of a lignin-based vitrimer material and its potential use for recoverable adhesive. Green Chem. 2018, 20, 2995–3000.

    Article  CAS  Google Scholar 

  53. Peng, Y.; Zhao, L.; Yang, C.; Yang, Y.; Song, C.; Wu, Q.; Huang, G.; Wu, J. Super tough and strong self-healing elastomers based on polyampholytes. J. Mater. Chem. A 2018, 6, 19066–19074.

    Article  CAS  Google Scholar 

  54. Meyers, M. A.; McKittrick, J.; Chen, P. Y. Structural biological materials: critical mechanics-materials connections. Science 2013, 339, 773.

    Article  CAS  PubMed  Google Scholar 

  55. Maghsoudi-Ganjeh, M.; Lin, L.; Wang, X.; Zeng, X. Bioinspired design of hybrid composite materials. Int. J. Smart Nano Mater. 2019, 10, 90–105.

    Article  Google Scholar 

  56. Mazinova, I.; Florian, P. Materials selection in mechanical design. 2014, p. 145–153.

  57. Wegst, U.; Ashby, M. The mechanical efficiency of natural materials. Philosophical Magazine A-physics of Condensed Matter Structure Defects and Mechanical Properties — PHIL MAG A 2004, 84, 2167–2186.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873110 and 51790501), State Key Laboratory of Polymer Materials Engineering (No. sklpme2019-2-14), and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Rong Wu.

Supporting Information

10118_2020_2479_MOESM1_ESM.pdf

An Interfacial Dynamic Crosslinking Approach toward Catalyst-free and Mechanically Robust Elastomeric Vitrimer with a Segregated Structure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Gao, JL., Zhang, LJ. et al. An Interfacial Dynamic Crosslinking Approach toward Catalyst-free and Mechanically Robust Elastomeric Vitrimer with a Segregated Structure. Chin J Polym Sci 39, 201–210 (2021). https://doi.org/10.1007/s10118-020-2479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2479-6

Keywords

Navigation