Skip to main content
Log in

Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Oriented “shish-kebab” structures could be obtained by shearing to enhance the mechanical properties of polymer samples markedly. However, the effect of shear mode on mechanical properties is still uncertain. The study of stepped hoop shear field on the isotactic polypropylene (iPP) pipe was developed through applying a self-designed rotational shear system (RSS). The effect of stepped shear field on the microstructure and comprehensive properties of iPP pipe was investigated by the comparison with continuous shear. It could be found that the loosely-assembled shish-kebabs with the larger size were formed in the continuous shear pipes, but the smaller and tightly-stacked ones existed in the pipes with stepped shear. Surprisingly, due to differential morphologies under different shear modes, better comprehensive mechanical properties were obtained in the pipes with stepped shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, C.; Jin, B.; Zhao, Z.; Shen, K.; Zhang, J. The influence of hoop shear field on the structure and performances of glass fiber reinforced three-layer polypropylene random copolymer pipe. J. Appl. Polym. Sci. 2019, 136.

  2. Huan, Q.; Zhu, S.; Ma, Y.; Zhang, J.; Zhang, S.; Feng, X.; Han, K.; Yu, M. Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing. Polymer 2013, 54, 1177–1183.

    CAS  Google Scholar 

  3. Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 2016, 49, 4571–4578.

    CAS  Google Scholar 

  4. Li, X.; Pi, L.; Nie, M.; Wang, Q. Joint effects of rotational extrusion and TiO2 on performance and antimicrobial properties of extruded polypropylene copolymer pipes. J. Appl. Polym. Sci. 2015, 132.

  5. Yang, H.; Luo, X.; Shen, K.; Yuan, Y.; Fu, Q.; Gao, X.; Jiang, L. The role of mandrel rotation speed on morphology and mechanical properties of polyethylene pipes produced by rotational shear. Polymer 2019, 184.

  6. Du, Z. C.; Yang, H.; Luo, X. H.; Xie, Z. X.; Gao, X. Q. The role of mold temperature on morphology and mechanical properties of PE pipe produced by rotational shear. Chinese. J. Polym. Sci. 2020, 38, 653–664.

    CAS  Google Scholar 

  7. Han, R.; Nie, M.; Wang, Q. Control over β-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly β nucleating agent and rotation extrusion. J. Taiwan. Inst. Chem. E 2015, 52, 158–164.

    CAS  Google Scholar 

  8. Min, N.; Bai, S.; Wang, Q. Effect of the inner wall cooling rate on the structure and properties of a polyethylene pipe extruded at a high rotation speed. J. Appl. Polym. Sci. 2011, 119, 1659–1666.

    Google Scholar 

  9. Tang, H. I.; Hiltner, A.; Baer, E. Biaxial orientation of polypropylene by hydrostatic solid state extrusion. Part III: mechanical properties and deformation mechanisms. Polym. Eng. Sci. 1987, 27, 876–886.

    CAS  Google Scholar 

  10. Litvinov, V. M.; Soliman, M. The effect of storage of poly(propylene) pipes under hydrostatic pressure and elevated temperatures on the morphology, molecular mobility and failure behaviour. Polymer 2005, 46, 3077–3089.

    CAS  Google Scholar 

  11. Chan, C. K.; Whitehouse, C.; Gao, P.; Chai, C. K. Flow induced chain alignment and disentanglement as the viscosity reduction mechanism within TLCP/HDPE blends. Polymer 2001, 42, 7847–7856.

    CAS  Google Scholar 

  12. Nie, M.; Han, R.; Wang, Q. Formation and alignment of hybrid shish-kebab morphology with rich beta crystals in an isotactic polypropylene pipe. Ind. Eng. Chem. Res. 2014, 53, 4142–4146.

    CAS  Google Scholar 

  13. Pi, L.; Nie, M.; Wang, Q. Crystalline composition and morphology in isotactic polypropylene pipe under combining effects of rotation extrusion and fibril β-nucleating agent. J. Vinyl. Addit. Techn. 2019, 25, E195–E202.

    CAS  Google Scholar 

  14. Luo, G.; Li, W.; Liang, W.; Liu, G.; Ma, Y.; Niu, Y.; Li, G. Coupimg effects of glass fiber treatment and matrix modification on the interfacial microstructures and the enhanced mechanical properties of glass fiber/polypropylene composites. Compos. Part B-Eng. 2017, 111, 190–199.

    CAS  Google Scholar 

  15. Kimata, S.; Sakurai, T.; Nozue, Y.; Kasahara, T.; Yamaguchi, N.; Karino, T.; Shibayama, M.; Kornfield, J. A. Molecular basis of the shish-kebab morphology in polymer crystallization. Science 2007, 316, 1014–1017.

    CAS  PubMed  Google Scholar 

  16. Somani, R. H.; Yang, L.; Zhu, L.; Hsiao, B. S. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 2005, 46, 8587–8623.

    CAS  Google Scholar 

  17. Hsiao, B. S.; Yang, L.; Somani, R. H.; Avila-Orta, C. A.; Zhu, L. Unexpected shish-kebab structure in a sheared polyethylene melt. Phys. Rev. Lett. 2005, 94.

  18. Yang, J.; Wang, C.; Wang, K.; Zhang, Q.; Chen, F.; Du, R.; Fu, Q. Direct formation of nanohybrid shish-kebab in the injection molded car of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 2009, 42, 7016–7023.

    CAS  Google Scholar 

  19. Hu, W.; Frenkel, D.; Mathot, V. B. F. Simulation of shish-kebab crystallite induced by a single prealigned macromolecule. Macromolecules 2002, 35, 7172–7174.

    CAS  Google Scholar 

  20. Kawaguchi, K. Mechanical properties and transparency of injection-molded polyacetal with branched and linear structure: influence of crystalline morphology. J. Appl. Polym. Sci. 2006, 100, 3382–3392.

    CAS  Google Scholar 

  21. Lei, J.; Jiang, C.; Shen, K. Biaxially self-reinforced high-density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties. J. Appl. Polym. Sci. 2004, 93, 1584–1590.

    CAS  Google Scholar 

  22. Na, B.; Zhang, Q.; Fu, Q.; Zhang, G.; Shen, K. Super polyolefin blends achieved via dynamic packing injection molding: the morphology and mechanical properties of HDPE/EVA blends. Polymer 2002, 43, 7367–7376.

    CAS  Google Scholar 

  23. Chen, Y. H.; Zhong, G. J.; Wang, Y.; Li, Z. M.; Li, L. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules 2009, 42, 4343–4348.

    CAS  Google Scholar 

  24. Nie, M.; Wang, Q.; Bai, S. B. Morphology and property of polyethylene pipe extruded at the low mandrel rotation. Polym. Eng. Sci. 2010, 50, 1743–1750.

    CAS  Google Scholar 

  25. Long, J.; Shen, K.; Ji, J.; Guan, Q. A mandrel-rotating die to produce high-hoop-strength HDPE pipe by self-reinforcement. J. Appl. Polym. Sci. 1998, 69, 323–328.

    CAS  Google Scholar 

  26. Nie, M.; Li, X.; Hu, X.; Wang, Q. Effect of die temperature on morphology and performance of polyethylene pipe prepared via mandrel rotation extrusion. J. Macromol. Sci. B 0014, 53, 1442–1452.

    Google Scholar 

  27. Han, R.; Nie, M.; Bai, S. B.; Wang, Q. Control over crystalline form in polypropylene pipe via mandrel rotation extrusion. Polym. Bull. 2013, 70, 2083–2096.

    CAS  Google Scholar 

  28. Nie, M.; Bai, S.; Wang, Q. High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion. Polym. Bull. 2010, 65, 609–621.

    CAS  Google Scholar 

  29. Xie, Z.; Gao, N.; Du, Z.; Yang, H.; Shen, K.; Fu, Q.; Gao, X. Role of melt plasticizing temperature in morphology and properties of PE100 pipes prepared by a rotational shear system. ACS Omega 2020, 5, 12660–12671.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kitade, S.; Kurihara, H.; Asuka, K.; Katsuno, S.; Akiba, I.; Sakurai, K. Oriented crystallization of long chain branched polypropylene induced by step-shear deformation in pre-crystallization regime. Polymer 2017, 116, 395–402.

    CAS  Google Scholar 

  31. Venerus, D. C.; Schieber, J. D.; Iddir, H.; Guzman, J. D.; Broerman, A. W. Relaxation of anisotropic thermal diffusivity in a polymer melt following step shear strain. Phys. Rev. Lett. 1999, 82, 366–369.

    CAS  Google Scholar 

  32. Li, Y.; Wen, X.; Nie, M.; Wang, Q. Controllable reinforcement of stiffness and toughness of polypropylene via thermally induced self-assembly of β-nucleating agent. J. Appl. Polym. Sci. 2014, 131.

  33. Han, R.; Nie, M.; Wang, Q.; Yan, S. Selfassembly β nucleating agent induced polymorphic transition from a-form shish kebab to β-form highly ordered lamella under intense shear field. Ind. Eng. Chem. Res. 2017, 56, 2764–2772.

    CAS  Google Scholar 

  34. Jones, A. T.; Aizlewood, J. M.; Beckett, D. Crystalline forms of isotactic polypropylene. Macromol. Chem. Phys. 1964, 75, 134–158.

    Google Scholar 

  35. Qiang, Z.; Shangguan, Y.; Tong, L.; Peng, M. Effect of vibration on crystal morphology and structure of isotactic polypropylene in nonisothermal crystallization. J. Appl. Polym. Sci. 2004, 94, 2187–2195.

    Google Scholar 

  36. Chen, H. B.; Karger-Kocsis, J.; Wu, J. S.; Varga, J. Fracture toughness of a- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 2002, 43, 6505–6514.

    CAS  Google Scholar 

  37. Policianová, O.; Hodan, J.; Brus, J.; Kotek, J. Origin of toughness in β-polypropylene: the effect of molecular mobility in the amorphous phase. Polymer 2015, 60, 107–114.

    Google Scholar 

  38. Ferro, D. R.; Meille, S. V.; Bruckner, S. Energy calculations for isotactic polypropylene: a contribution to clarify the β crystalline structure. Macromolecules 1998, 31, 6926–6934.

    CAS  Google Scholar 

  39. Vleeshouwers, S. Simultaneous in-situ WAXS/SAXS and DSC study of the recrystallization and melting behaviour of the a and β form of iPP. Polymer 1997, 38, 3213–3221.

    CAS  Google Scholar 

  40. Li, H.; Sun, X.; Yan, S.; Schultz, J. M. Initial stage of iPP β to a growth transition induced by stepwise crystallization. Macromolecules 2008, 41, 5062–5064.

    CAS  Google Scholar 

  41. Wang, J.; Ren, Z.; Sun, X.; Li, H.; Yan, S. The βa growth transition of isotactic polypropylene during stepwise crystallization at elevated temperature. Colloid. Polym. Sci. 2015, 293, 2823–2830.

    CAS  Google Scholar 

  42. Varga, J. β-Modification of polypropylene and its two-component systems. J. Therm. Anal. 1989, 35, 1891–1912.

    CAS  Google Scholar 

  43. Doufas, A. K.; Dairanieh, I. S.; McHugh, A. J. A continuum model for flow-induced crystallization of polymer melts. J. Rheol. Macromolecul. 1999, 43, 85–109.

    CAS  Google Scholar 

  44. Coppola, S.; Grizzuti, N.; Maffettone, P. L. Microrheological modeling of flow-induced crystallization. Macromolecules 2001, 34, 5030–5036.

    CAS  Google Scholar 

  45. Yan, T.; Zhao, B.; Cong, Y.; Fang, Y.; Cheng, S.; Li, L.; Pan, G.; Wang, Z.; Li, X.; Bian, F. Critical strain for shish-kebab formation. Macromolecules 2010, 43, 602–605.

    CAS  Google Scholar 

  46. Ju, J.; Wang, Z.; Su, F.; Ji, Y.; Yang, H.; Chang, J.; Ali, S.; Li, X.; Li, L. Extensional flow-induced dynamic phase transitions in isotactic polypropylene. Macromol. Rapid Commun. 2016, 37, 1441–1445.

    CAS  PubMed  Google Scholar 

  47. Heeley, E. L.; Fernyhough, C. M.; Graham, R. S.; Olmsted, P. D.; Inkson, N. J.; Embery, J.; Groves, D. J.; McLeish, T. C. B.; Morgovan, A. C.; Meneau, F.; Bras, W.; Ryan, A. J. Shear-induced crystallization in blends of model linear and long-chain branched hydrogenated polybutadienes. Macromolecules 2006, 39, 5058–5071.

    CAS  Google Scholar 

  48. Zhang, C.; Liu, G.; Zhao, Y.; Wang, K.; Dong, X.; Li, Z.; Wang, L.; Wang, D. Exploring the polymorphic behavior of a β-nudeated propylene-ethylene random copolymer under shear flow. Polym. Crystallizat. 2020, 3, e10105.

    CAS  Google Scholar 

  49. Huo, H.; Jiang, S.; An, L.; Feng, J. Influence of shear on crystallization behavior of the β phase in isotactic polypropylene with β-nucleating agent. Macromolecules 2004, 37, 2478–2483.

    CAS  Google Scholar 

  50. Chen, Y. H.; Mao, Y. M.; Li, Z. M.; Hsiao, B. S. Competitive growth of a- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules 2010, 43, 6760–6771.

    CAS  Google Scholar 

  51. Xia, C.; Du, H.; Wang, F.; La, R.; Mi, D.; Li, X.; Zhang, J. A novel crystal morphology of isotactic polypropylene induced by pressure vibration field: a banded spherulite. Mater. Lett. 2015, 153, 66–69.

    CAS  Google Scholar 

  52. Shi, Y.; Dou, Q. The relationship between structure and properties of β-phase isotactic polypropylene. Adv. Mat. Res. 2011, 233–235, 2129–2137.

    Google Scholar 

  53. Keum, J. K.; Zuo, F.; Hsiao, B. S. Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 2008, 41, 4766–4776.

    CAS  Google Scholar 

  54. Alexander, L. X-ray diffraction methods in polymer science. J. Mater. Sci. 1971, 6, 93–93.

    Google Scholar 

  55. Tang, Y.; Jiang, Z.; Men, Y.; An, L.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J. Uniaxial deformation of overstretched polyethylene: in-sttu synchrotron small angle X-ray scattering study. Polymer 2007, 48, 5125–5132.

    CAS  Google Scholar 

  56. Men, Y.; Rieger, J.; Lindner, P.; Enderle, H. F.; Lilge, D.; Kristen, M. O.; Mihan, S.; Jiang, S. Structural changes and chain radius of gyration in cold-drawn polyethylene after annealing: small- and wide-angle X-ray scattering and small-angle neutron scattering studies. J. Phys. Chem. B 2005, 109, 16650–16657.

    CAS  PubMed  Google Scholar 

  57. Jiang, Z.; Tang, Y.; Men, Y.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J. Structural evolution of tensile-deformed high-density polyethylene during annealing: scanning synchrotron small-angle X-ray scattering study. Macromolecules 2007, 40, 7263–7269.

    CAS  Google Scholar 

  58. Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution. Polymer 2017, 120, 244–254.

    CAS  Google Scholar 

  59. Alexander, L. E. X-ray diffraction methods in polymer science. John Wiley & Sons Inc: New York, 1979.

    Google Scholar 

  60. Huang, Y. F.; Xu, J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials 2014, 35, 6687–6697.

    CAS  PubMed  Google Scholar 

  61. Kalay, G.; Kalay, C. R. Interlocking shish-kebab morphology in polybutene-1. J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 1828–1834.

    CAS  Google Scholar 

  62. Fu, J.; Ghali, B. W.; Lozynsky, A. J.; Oral, E.; Muratoglu, O. K. Ultra high molecular weight polyethylene with improved plasticity and toughness by high temperature melting. Polymer 2010, 51, 2721–2731.

    CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (No. 21627804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Qin Gao or Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, WC., Du, ZC., Yang, H. et al. Effect of Different Shear Modes on Morphology and Mechanical Properties of Polypropylene Pipes Produced by Rotational Shear. Chin J Polym Sci 38, 1392–1402 (2020). https://doi.org/10.1007/s10118-020-2477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2477-8

Keywords

Navigation