Skip to main content
Log in

Highly efficient removal of toxic ions by the activated carbon derived from Citrus limon tree leaves

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The purpose of this study was to remove lead and arsenic ions from aqueous solutions using the activated carbon prepared from Citrus limon tree leaves. Characteristics of the prepared adsorbent were studied thoroughly using BET, SEM, EDS and mapping, XRD, and RAMAN analyses. The results of experiments showed that the highest adsorption efficiencies were 97.67% and 95.89% for Pb (II) and As (III), respectively. Additionally, the adsorbent was successfully regenerated four times and therefore it was able to perform the adsorption and desorption processes well. Moreover, the results of adsorption kinetics showed that the pseudo second-order kinetic model was more effective for the description of adsorption mechanism of both metals. Furthermore, the equilibrium studies indicated that Langmuir and Freundlich isotherm models were desirable for lead and arsenic ions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Paul J, Rawat K, Sarma K, Sabharwal S (2011) Decoloration and degradation of reactive red-120 dye by electron beam irradiation in aqueous solution. Appl Radiat Isot 69(7):982–987

    CAS  Google Scholar 

  2. Bulgariu L, Bulgariu D, Macoveanu M (2011) Adsorptive performances of alkaline treated peat for heavy metal removal. Sep Sci Technol 46(6):1023–1033

    CAS  Google Scholar 

  3. Nacu G, Negrila L, Bulgariu L (2017) Batch adsorption of Zn (II) ions from aqueous solution onto sawdust. Rev Roum Chim 62(4–5):439–447

    Google Scholar 

  4. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    CAS  Google Scholar 

  5. Mousavi SM, Hashemi SA, Amani AM, Esmaeili H, Ghasemi Y, Babapoor A, Mojoudi F, Arjomand O (2018) Pb (II) removal from synthetic wastewater using kombucha scoby and graphene oxide/Fe3O4. Phys Chem Res 6(4):759–771

    CAS  Google Scholar 

  6. Saman N, Johari K, Song S-T, Kong H, Cheu S-C, Mat H (2016) High removal efficiency of Hg (II) and MeHg (II) from aqueous solution by coconut pith—equilibrium, kinetic and mechanism analyses. J environmental chemical engineering 4(2):2487–2499

    CAS  Google Scholar 

  7. Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157(2–3):277–296

    CAS  Google Scholar 

  8. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92(10):2355–2388

    CAS  Google Scholar 

  9. Volf I, Rakoto NG, Bulgariu L (2015) Valorization of Pistia stratiotes biomass as biosorbent for lead (II) ions removal from aqueous media. Sep Sci Technol 50(10):1577–1586

    CAS  Google Scholar 

  10. Foroutan R, Mohammadi R, Farjadfard S, Esmaeili H, Saberi M, Sahebi S, Dobaradaran S, Ramavandi B (2019) Characteristics and performance of Cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment. Environ Sci Pollut Res 26(7):6336–6347

    CAS  Google Scholar 

  11. Mousavi SM, Hashemi SA, Esmaeili H, Amani AM, Mojoudi F (2018) Synthesis of Fe3O4 nanoparticles modified by oak shell for treatment of wastewater containing Ni (II). Acta Chim Slov 65(3):750–756

    CAS  Google Scholar 

  12. Baral S, Das N, Chaudhury GR, Das S (2009) A preliminary study on the adsorptive removal of Cr (VI) using seaweed, Hydrilla verticillata. J Hazard Mater 171(1–3):358–369

    CAS  Google Scholar 

  13. Ramavandi B, Farjadfard S (2014) Removal of chemical oxygen demand from textile wastewater using a natural coagulant. Korean J Chem Eng 31(1):81–87

    CAS  Google Scholar 

  14. Harja M, Buema G, Bulgariu L, Bulgariu D, Sutiman DM, Ciobanu G (2015) Removal of cadmium (II) from aqueous solution by adsorption onto modified algae and ash. Korean J Chem Eng 32(9):1804–1811

    CAS  Google Scholar 

  15. Royer B, Cardoso NF, Lima EC, Vaghetti JC, Simon NM, Calvete T, Veses RC (2009) Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions—kinetic and equilibrium study. J Hazard Mater 164(2–3):1213–1222

    CAS  Google Scholar 

  16. Nacu G, Bulgariu D, Cristina Popescu M, Harja M, Toader Juravle D, Bulgariu L (2016) Removal of Zn (II) ions from aqueous media on thermal activated sawdust. Desalination Water Treat 57(46):21904–21915

    CAS  Google Scholar 

  17. Abshirini Y, Foroutan R, Esmaeili H (2018) Cr (VI) removal from aqueous solution using activated carbon prepared from Ziziphus spina-christi leaf. Mat Res Exp 6:045607

    Google Scholar 

  18. Khademi Z, Ramavandi B, Ghaneian MT (2015) The behaviors and characteristics of a mesoporous activated carbon prepared from Tamarix hispida for Zn (II) adsorption from wastewater. J Environ Chem Eng 3(3):2057–2067

    CAS  Google Scholar 

  19. Esmaeili H, Foroutan R (2019) Adsorptive behavior of methylene blue onto sawdust of sour lemon, date palm, and eucalyptus as agricultural wastes. J Dispersion Sci Technol 40(7):990–999

    CAS  Google Scholar 

  20. Yao S, Zhang J, Shen D, Xiao R, Gu S, Zhao M, Liang J (2016) Removal of Pb (II) from water by the activated carbon modified by nitric acid under microwave heating. J Colloid Interface Sci 463:118–127

    CAS  Google Scholar 

  21. Wang K, Zhao J, Li H, Zhang X, Shi H (2016) Removal of cadmium (II) from aqueous solution by granular activated carbon supported magnesium hydroxide. J Taiwan Inst Chem Eng 61:287–291

    CAS  Google Scholar 

  22. Saleh TA, Alhooshani KR, Abdelbassit MS (2015) Evaluation of AC/ZnO composite for sorption of dichloromethane, trichloromethane and carbon tetrachloride: kinetics and isotherms. J Taiwan Inst Chem Eng 55:159–169

    CAS  Google Scholar 

  23. Hayati B, Maleki A, Najafi F, Gharibi F, McKay G, Gupta VK, Puttaiah SH, Marzban N (2018) Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chem Eng J 346:258–270

    CAS  Google Scholar 

  24. Shi T, Jia S, Chen Y, Wen Y, Du C, Guo H, Wang Z (2009) Adsorption of Pb (II), Cr (III), Cu (II), Cd (II) and Ni (II) onto a vanadium mine tailing from aqueous solution. J Hazard Mater 169(1–3):838–846

    CAS  Google Scholar 

  25. Dong C, Lu J, Qiu B, Shen B, Xing M, Zhang J (2018) Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl Catal B 222:146–156

    CAS  Google Scholar 

  26. Klekotka U, Wińska E, Zambrzycka-Szelewa E, Satuła D, Kalska-Szostko B (2018) Heavy-metal detectors based on modified ferrite nanoparticles. Beilstein J Nanotechnol 9(1):762–770

    CAS  Google Scholar 

  27. Lawal O, Sanni A, Ajayi I, Rabiu O (2010) Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead (II) ions onto the seed husk of Calophyllum inophyllum. J Hazard Mater 177(1–3):829–835

    CAS  Google Scholar 

  28. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Chii YY, Siddique BM (2009) Removal of Cu (II) and Pb (II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalination 247(1–3):636–646

    CAS  Google Scholar 

  29. Shirmardi M, Alavi N, Lima EC, Takdastan A, Mahvi AH, Babaei AA (2016) Removal of atrazine as an organic micro-pollutant from aqueous solutions: a comparative study. Process Saf Environ Prot 103:23–35

    CAS  Google Scholar 

  30. Takdastan A, Mahvi AH, Lima EC, Shirmardi M, Babaei AA, Goudarzi G, Neisi A, Heidari Farsani M, Vosoughi M (2016) Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions. Water Sci Technol 74(10):2349–2363

    CAS  Google Scholar 

  31. Dehghani MH, Dehghan A, Alidadi H, Dolatabadi M, Mehrabpour M, Converti A (2017) Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: kinetic and equilibrium study. Korean J Chem Eng 34(6):1699–1707

    CAS  Google Scholar 

  32. Kumar IA, Viswanathan N (2018) Preparation and testing of a tetra-amine copper (II) chitosan bead system for enhanced phosphate remediation. Carbohyd Polym 183:173–182

    CAS  Google Scholar 

  33. Chiou M-S, Li H-Y (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater 93(2):233–248

    CAS  Google Scholar 

  34. Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645

    CAS  Google Scholar 

  35. Fang F, Kong L, Huang J, Wu S, Zhang K, Wang X, Sun B, Jin Z, Wang J, Huang X-J (2014) Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J Hazard Mater 270:1–10

    CAS  Google Scholar 

  36. Lima EC, Royer B, Vaghetti JC, Simon NM, da Cunha BM, Pavan FA, Benvenutti EV, Cataluña-Veses R, Airoldi C (2008) Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution: kinetics and equilibrium study. J Hazard Mater 155(3):536–550

    CAS  Google Scholar 

  37. Wang P, Du M, Zhu H, Bao S, Yang T, Zou M (2015) Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. J Hazard Mater 286:533–544

    CAS  Google Scholar 

  38. Mousavi M, Hashemi A, Arjmand O, Amani AM, Babapoor A, Fateh MA, Fateh H, Mojoudi F, Esmaeili H, Jahandideh S (2018) Erythrosine adsorption from aqueous solution via decorated graphene oxide with magnetic iron oxide nano particles: kinetic and equilibrium studies. Acta Chim Slov 65(4):882–894

    CAS  Google Scholar 

  39. Liu F, Li L, Ling P, Jing X, Li C, Li A, You X (2011) Interaction mechanism of aqueous heavy metals onto a newly synthesized IDA-chelating resin: isotherms, thermodynamics and kinetics. Chem Eng J 173(1):106–114

    CAS  Google Scholar 

  40. Matouq M, Jildeh N, Qtaishat M, Hindiyeh M, Al Syouf MQ (2015) The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J Environ Chem Eng 3(2):775–784

    CAS  Google Scholar 

  41. Nashine A, Tembhurkar A (2016) Equilibrium, kinetic and thermodynamic studies for adsorption of As (III) on coconut (Cocos nucifera L.) fiber. J Environ Chem Eng 4(3):3267–3273

    CAS  Google Scholar 

  42. Aksu Z, İşoğlu İA (2005) Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem 40(9):3031–3044

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Jafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, F., Jafari, D. & Esmaeili, H. Highly efficient removal of toxic ions by the activated carbon derived from Citrus limon tree leaves. Carbon Lett. 31, 509–521 (2021). https://doi.org/10.1007/s42823-020-00181-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00181-7

Keywords

Navigation