Skip to main content
Log in

A Review on Membrane Finite Elements with Drilling Degree of Freedom

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Membrane finite elements have gained increasing importance since the early years of the finite elements method due to their convenience to a wide range of plane and 3D shell problems. Many research works have been focussing on membrane elements with drilling rotation. These elements are plane stress finite elements with a rotational in-plane degree of freedom. The main motivation for introducing the drilling rotation into membrane/shell elements is to improve the accuracy of the model and to avoid the problem of singularity of the stiffness matrix of shell elements in a natural way. In this article, a comprehensive review has been written for both new and expert researchers in the field. By summarizing the basic theories that have been used, new researchers can get clarification on the relevant computational methods and, gradually get familiarized with the advantages and drawbacks of each formulation. Expert researchers in the field can track-back the history of membrane elements with drilling rotation through a comprehensive review of relevant references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Courant R (1943) Variational methods for the solution of problems of equilibrium and vibrations. Bull Am Math Soc 49:1–23

    MathSciNet  MATH  Google Scholar 

  2. Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23:805–824

    MATH  Google Scholar 

  3. Taig IC (1961) Structural analysis by the matrix displacement method. English Electric Aviation report No. 5017

  4. Prathap G (1985) The poor bending response of the four-node plane stress quadrilateral. Int J Numer Methods Eng 21:825–835

    MATH  Google Scholar 

  5. MacNeal RH (1987) A theorem regarding the locking of tapered four-noded membrane elements. Int J Numer Methods Eng 24(9):1793–1799

    MATH  Google Scholar 

  6. Lee NS, Bathe KJ (1993) Effects of element distortions on the performance of isoparametric elements. Int J Numer Methods Eng 36(20):3553–3576

    MATH  Google Scholar 

  7. Hughes TJR (1977) Equivalence of finite elements for nearly incompressible elasticity. J Appl Mech 44:181–183

    Google Scholar 

  8. de-Veubeke BF (1965) Displacement and equilibrium models in the finite element method. In: Zienkiewicz OC, Holister GS (eds) Stress Analysis. Wiley, London, pp 145–196

    Google Scholar 

  9. Zienkiewicz OC, Taylor RL, Too JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290

    MATH  Google Scholar 

  10. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J (1973) Incompatible displacement models. In: Fenves SJ et al (eds) Numerical and computer methods in structural mechanics. Academic Press, New York, pp 43–57

    Google Scholar 

  11. Taylor RL, Beresford PJ, Wilson EL (1976) A nonconforming element for stress analysis. Int J Numer Methods Eng 10:1211–1219

    MATH  Google Scholar 

  12. Bergan PG (1980) Finite elements based on energy orthogonal functions. Int J Numer Methods Eng 15:1541–1555

    MathSciNet  MATH  Google Scholar 

  13. Bergan PG, Nygård MK (1984) Finite elements with increased freedom in choosing shape functions. Int J Numer Methods Eng 20:643–664

    MATH  Google Scholar 

  14. Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2(7):1333–1336

    Google Scholar 

  15. Cook RD, Al-Abdulla JK (1969) Some plane quadrilateral ‘hybrid’ finite elements. AIAA J 7(11):2184–2185

    Google Scholar 

  16. MacNeal RH (1982) Derivation of element stiffness matrices by assumed strain distribution. J Nucl Eng Des 70:3–12

    Google Scholar 

  17. Simo JC, Hughes TJR (1986) On the variational foundations of assumed strain methods. J Appl Mech ASME 53:51–54

    MathSciNet  MATH  Google Scholar 

  18. Sabir AB (1983) Strain based finite elements for the analysis of cylinders with holes and normally intersecting cylinders. Nucl Eng Des 76:111–1210

    Google Scholar 

  19. Sabir AB (1985) A rectangular and triangular plane elasticity element with drilling degrees of freedom. In: Chapter 9 in proceeding of the 2nd international conference on variational methods in engineering, Southampton University, Springer, Berlin, pp 17–25

  20. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    MathSciNet  MATH  Google Scholar 

  21. Chen W, Tang LM (1981) Isoparametric quasi-conforming element. J Dalian Univ Technol 20(1):63–74

    Google Scholar 

  22. Tang LM, Chen W, Liu YX (1984) Formulation of quasiconforming element and Hu–Washizu principle. Comput Struct 19:247–250

    MATH  Google Scholar 

  23. Long YQ, Huang MF (1988) A generalized conforming isoparametric element. Appl Math Mech (Engl Edit) 9(10):929–936

    MATH  Google Scholar 

  24. Long YQ, Li JX, Long ZF, Cen S (1999) Area coordinates used in quadrilateral elements. Commun Numer Methods Eng 15(8):533–545

    MATH  Google Scholar 

  25. Long ZF, Li JX, Cen S, Long YQ (1999) Some basic formulae for area coordinates used in quadrilateral elements. Commun Numer Methods Eng 15(12):841–852

    MATH  Google Scholar 

  26. Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity analysis. Comput Struct 19(1–2):1–8

    MATH  Google Scholar 

  27. Carpenter N, Stolarski H, Belytschko T (1985) A flat triangular shell element with improved membrane interpolation. Commun Appl Numer Methods 1:161–168

    MATH  Google Scholar 

  28. Bergan PG, Felippa CA (1985) A triangular membrane element with rotational degrees of freedom. Comput Methods Appl Mech Eng 50(1):25–69

    MATH  Google Scholar 

  29. Bergan PG, Hanssen L (1976) A new approach for deriving “good” finite elements. In: Whiteman JR (ed) The mathematics of finite elements and applications, vol II. Academic Press, London, pp 483–498

    Google Scholar 

  30. Park KC, Stanley GM (1986) A curved C0 shell element based on assumed natural-coordinate strains. J Appl Mech 53:278–290

    MATH  Google Scholar 

  31. Zhong WX, Zeng J (1996) Rational finite elements. J Comput Struct Mech Appl 13:1–8 (in Chinese)

    Google Scholar 

  32. Clough RW, Wilson EL (1971) Dynamic finite element analysis of arbitrary thin shells. Comput Struct 1:33–56

    Google Scholar 

  33. Zienkiewicz OC, Parekh CJ, King IP (1965) Arch dams analysed by a linear finite element shell solution program. In: Proceedings of symposium on theory of arch dams, Southampton University, Pergamon Press, Oxford

  34. Zienkiewicz OC (1977) The Finite Element Method, 3rd edn. London Mc Graw Hill, UK

    MATH  Google Scholar 

  35. Bathe KJ, Ho LW (1981) A simple and effective element for analysis of general shell structures. Comput Struct 13:673–681

    MATH  Google Scholar 

  36. Bergan PG (1967) Plane stress analysis using the finite element method. Triangular element with 6 parameters at each node, Division of Structural Mechanics, The Norwegian Institute of Technology, Trondheim, Norway

  37. Tocher JL, Hartz BJ (1967) Higher order finite element for plane stress. J Engng Mech Div Proc ASCE 93:149–172

    Google Scholar 

  38. Holand I, Bergan PG (1968) Higher order finite element for plane stress. Discussion. Proc. ASCE. J Eng Mech Div 94(EM2):698-702

  39. Dungar R, Severn RT (1969) Triangular finite elements of variable thickness and their application to plate and shell problems. J Strain Anal 4:10–21

    Google Scholar 

  40. MacLeod IA (1969) New rectangular finite element for shear wall analysis. J Struct Div Proc ASCE 95:399–409

    Google Scholar 

  41. Robinson J (1980) Four-node quadrilateral stress membrane element with rotational stiffness. Int J Numer Methods Eng 16:1567–1569

    MathSciNet  MATH  Google Scholar 

  42. Mohr GA (1982) Finite element formulation by nested interpolations: application to the drilling freedom problem. Comput Struct 15:185–190

    MathSciNet  MATH  Google Scholar 

  43. Cook RD (1986) On the Allman triangle and related quadrilateral element. Comput Struct 22(6):1065–1067

    Google Scholar 

  44. Allman DJ (1988) Evaluation of the constant strain triangle with drilling rotations. Int J Numer Methods Eng 26(12):2645–2655

    MATH  Google Scholar 

  45. Cook RD (1990) Some options for plane triangular elements with rotational degrees of freedom. Finite Elem Anal Des 6:245–249

    Google Scholar 

  46. Fish J, Belytschko T (1992) Stabilized rapidly convergent 18-degrees-of-freedom flat shell triangular element. Int J Numer Methods Eng 33:149–162

    Google Scholar 

  47. Allman DJ (1988) Quadrilateral finite element including vertex rotations for plane elasticity analysis. Int J Numer Methods Eng 26(3):717–730

    MATH  Google Scholar 

  48. Cook RD (1987) A plane hybrid element with rotational d.o.f. and adjustable stiffness. Int J Numer Methods Eng 24:1499–1508

    MATH  Google Scholar 

  49. Jaamei S (1988) ‘Jet’ thin shell finite element with drilling rotations. IREM Internal Report 88/7, Ecole Polytechnique Fédérale de Lausanne

  50. MacNeal RH, Harder RL (1988) A refined four-node membrane element with rotational degrees of freedom. Comput Struct 28(1):75–84

    MATH  Google Scholar 

  51. Stander N, Wilson EL (1989) A 4-node quadrilateral membrane element with in-plane vertex rotations and modified reduced quadrature. Eng Comput 6:266–271

    Google Scholar 

  52. Frey F (1989) Shell finite elements with six degrees of freedom per node. ASME Winter annual meeting, San Francisco, December

  53. MacNeal RH (1989) Toward a defect-free four nodded membrane element. Finite Elem Anal Des 5:31–37

    Google Scholar 

  54. Cook RD (1991) Modified formulations for nine-d.o.f. plane triangles that include vertex rotations. Int J Numer Methods Eng 31:825–835

    MATH  Google Scholar 

  55. Ibrahimbegovic A, Wilson EL (1991) A unifed formulation for triangular and quadrilateral flat shell finite element with six nodal degrees of freedom. Commun Appl Numer Methods 7:1–9

    MATH  Google Scholar 

  56. Allman DJ (1993) Variational validation of a membrane finite element with drilling rotations. Commun Numer Methods Eng 9:345–351

    MATH  Google Scholar 

  57. Cook RD (1993) Further development of a three-node triangular shell element. Int J Numer Methods Eng 36(8):1413–1425

    MATH  Google Scholar 

  58. Cook RD (1994) Four-node ‘flat’ shell element: drilling degrees-of-freedom, membrane-bending coupling, warped geometry, and behavior. Comput Struct 50:549–555

    Google Scholar 

  59. Sze KY, Sim YS, Soh AK (1997) A hybrid stress quadrilateral shell element with full rotational D.O.F.s. Int J Numer Methods Eng 40:1785–1800

    Google Scholar 

  60. Nguyen-Van H, Mai-Duy N, Tran-Cong T (2009) An improved quadrilateral flat element with drilling degrees of freedom for shell structural analysis. CMES Comput Model Eng Sci 49(2):81–112

    Google Scholar 

  61. Sze KY, Ghali A (1993) Hybrid plane quadrilateral element with corner rotations. ASCE J Struct Eng 119:2552–2572

    Google Scholar 

  62. Wisniewski K, Turska E (2012) Four-node mixed Hu–Washizu shell element with drilling rotation. Int J Numer Methods Eng 90:506–536

    MathSciNet  MATH  Google Scholar 

  63. Flanagan DP, Belytschko T (1981) A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Methods Eng 17:679–706

    MATH  Google Scholar 

  64. Ibrahimbegovic A (1990) A novel membrane finite element with an enhanced displacement interpolation. Finite Elem Anal Des 7:167–179

    MATH  Google Scholar 

  65. Boutagouga D (2017) A new enhanced assumed strain quadrilateral membrane element with drilling degree of freedom and modified shape functions. Int J Numer Methods Eng 110(6):573–600

    MathSciNet  MATH  Google Scholar 

  66. Ibrahimbegovic A, Frey F (1992) Quadrilateral membrane elements with rotational degrees of freedom. Eng Fract Mech 43:13–24

    Google Scholar 

  67. Groenwold AA, Stander N (1995) An efficient 4-node 24 d.o.f. thick shell finite element with 5-point quadrature. Eng Comput 12:723–748

    MATH  Google Scholar 

  68. Choi CK, Lee PS, Park YM (1999) Defect-free 4-node shell element: NMS-4F element. Struct Eng Mech 8(2):207–231

    Google Scholar 

  69. Groenwold AA, Xiao QZ, Theron NJ (2004) Accurate solution of traction free boundaries using hybrid stress membrane elements with drilling degrees of freedom. Comput Struct 82:2071–2081

    Google Scholar 

  70. Yunus SM, Saigal S, Cook RD (1989) On improved hybrid finite elements with rotational degrees of freedom. Int J Numer Methods Eng 28:785–800

    Google Scholar 

  71. Sze KY, Chen W, Cheung YK (1992) An efficient quadrilateral plane element with drilling degrees of freedom using orthogonal stress modes. Comput Struct 42(5):695–705

    MATH  Google Scholar 

  72. Yeh JT, Chen WH (1993) Shell elements with drilling degree of freedoms based on micropolar elasticity theory. Int J Numer Methods Eng 36:1145–1159

    MATH  Google Scholar 

  73. Kugler S, Fotiu P, Murin J (2010) A highly efficient membrane finite element with drilling degrees of freedom. Acta Mech 213:323–348

    MATH  Google Scholar 

  74. Madeo A, Zagari G, Casciaro R (2012) An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes. Finite Elem Anal Des 50:21–32

    Google Scholar 

  75. Long CS, Loveday PW, Groenwold AA (2006) Planar four node piezoelectric elements with drilling degrees of freedom. Int J Numer Methods Eng 65:1802–1830

    MATH  Google Scholar 

  76. Chang TL, Lee C-L, Carr AJ, Dhakal RP, Pampanin S (2019) A new drilling quadrilateral membrane element with high coarse-mesh accuracy using a modified Hu–Washizu principle. Int J Numer Meth Eng 119(7):639–660

    MathSciNet  Google Scholar 

  77. Bergan PG, Felippa CA (1986) Efficient implementation of a triangular membrane element with drilling freedoms. In: Hughes TJR, Hinton E (eds) Finite element methods for plate and shell structures, vol 1. Element technology. Pineridge Press, Swansea, pp 128–152

    Google Scholar 

  78. Bergan PG, Nygard MK (1986) A quadrilateral membrane element with rotational freedoms. In: Yagawa G, Atluri SN (eds) Computational mechanics ‘86, Proceedings of international conference on computational mechanics, Tokyo, Springer

  79. Alvin K, Fuente HM, Haugen B, Felippa CA (1992) Membrane triangles with corner drilling freedoms. I. The EFF element. Finite Elem Anal Des 12:163–187

    MATH  Google Scholar 

  80. Felippa CA, Militello C (1992) Membrane triangles with corner drilling freedoms II. The ANDES element. Finite Elem Anal Des 12:189–201

    MATH  Google Scholar 

  81. Felippa CA (2003) Study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192(16–18):2125–2168

    MATH  Google Scholar 

  82. Felippa CA, Alexander S (1992) Membrane triangles with corner drilling freedoms III. Implementation and performance evaluation. Finite Elem Anal Des 12:203–239

    MATH  Google Scholar 

  83. Belarbi MT, Bourezane M (2005) On improved Sabir triangular element with drilling rotation. Revue Européenne de Génie Civil 9:1151–1175

    Google Scholar 

  84. Belarbi MT, Maalam T (2005) On improved rectangular finite element for plane linear elasticity analysis. Revue Européenne des Eléments Finis 40:985–997

    MATH  Google Scholar 

  85. Rebiai C, Belounar L (2013) A new strain based rectangular finite element with drilling rotation for linear and nonlinear analysis. Arch Civ Mech Eng 13(1):72–81

    Google Scholar 

  86. Rebiai C, Belounar L (2014) An effective quadrilateral membrane finite element based on the strain approach. Measurement 50:263–269

    Google Scholar 

  87. Rebiai C (2019) Finite element analysis of 2-D structures by new strain based triangular element. J Mech 35(3):305–313

    Google Scholar 

  88. Rezaiee-Pajand M, Yaghoobi M (2015) Two new quadrilateral elements based on strain states. Civ Eng Infrastruct J 48(1):133–156

    Google Scholar 

  89. Rezaiee-Pajand M, Gharaei-Moghadda N, Ramezani M (2019) Two triangular membrane element based on strain. Int J Appl Mech. 11(1):1950010

    Google Scholar 

  90. Reissner E (1965) A note on variational principles in elasticity. Int J Solids Struct 1:93–95

    Google Scholar 

  91. Hughes TJR, Brezzi F (1989) On drilling degrees of freedom. Comput Methods Appl Mech Eng 72(1):105–121

    MathSciNet  MATH  Google Scholar 

  92. Hughes TJR, Brezzi F, Masud A, Harari I (1989) Finite elements with drilling degrees of freedom: theory and numerical evaluations. In: Proceedings of the fifth international symposium on numerical methods in engineering, Computational Mechanics Publications, Ashurst, UK, pp 3–17

  93. Ibrahimbegovic A, Taylor RL, Wilson EL (1990) A robust quadrilateral membrane finite element with drilling degrees of freedom. Int J Numer Methods Eng 30:445–457

    MATH  Google Scholar 

  94. Simo JC, Fox DD, Hughes TJR (1992) Formulation of finite elasticity with independent rotations. Comput Meth Appl Mech Eng 95:277–288

    MathSciNet  MATH  Google Scholar 

  95. Ibrahimbegovic A (1993) Mixed finite element with drilling rotations for plane problems in finite elasticity. Comput Methods Appl Mech Eng 107:225–238

    MATH  Google Scholar 

  96. Ibrahimbegovic A, Frey F (1995) Variational principles and membrane finite elements with drilling rotations for geometrically nonlinear elasticity. Int J Numer Methods Eng 38:1885–1900

    MATH  Google Scholar 

  97. Zhu Y, Zacharia T (1996) A new one-point quadrature, quadrilateral shell element with drilling degrees of freedom. Comput Methods Appl Mech Eng 136:165–203

    MathSciNet  MATH  Google Scholar 

  98. Geyer S, Groenwold AA (2002) Two hybrid stress membrane finite element families with drilling rotations. Int J Numer Methods Eng 53:583–601

    MATH  Google Scholar 

  99. Chinosi C, Comodi MI, Sacchib G (1997) A new finite element with ‘drilling’ d.o.f. Comput Methods Appl Mech Eng 143:1–11

    MathSciNet  MATH  Google Scholar 

  100. Wilson EL, Ibrahimbegovic A (1990) Addition of incompatible displacement modes for the calculation of element stiffness and stress. Finite Elem Anal Des 7:229–242

    Google Scholar 

  101. Ibrahimbegovic A, Frey F (1993) Geometrically nonlinear method of incompatible modes in application to finite elasticity with independent rotations. Int J Numer Methods Eng 36:4185–4200

    MathSciNet  MATH  Google Scholar 

  102. Boutagouga D (2020) A formulation of membrane finite elements with true drilling rotation. The compatible triangular element. Eng Comput 37(1):203–236

    Google Scholar 

  103. Sun SL, Yuan MW, Chen P (1997) A practical quadrilateral membrane element with drilling degrees of freedom. Acta Mech Solida Sin 10(2):179–188

    Google Scholar 

  104. Iura M, Atluri SN (1992) Formulation of a membrane finite element with drilling degrees of freedom. Comput Mech 96:417–428

    MATH  Google Scholar 

  105. Chen W, Li Y (1993) Refined non-conforming quadrilateral plane isoparametric element with drilling degrees of freedom. Comput Struct Mech Appl 10(1):22–29

    Google Scholar 

  106. Kouhia R (1996) A novel membrane finite element with drilling rotations. In: Desideri J-A, Le Tallec P, Onate E, Periaux J, Stein E (eds) Numerical methods in engineering’96, Proceedings of the second ECCOMAS conference on numerical methods in engineering, Paris, France, Wiley, pp 415–420

  107. Moreira RAS, Rodrigues JD (2011) A non-conforming plate facet-shell finite element with drilling stiffness. Finite Elem Anal Des 47:973–981

    Google Scholar 

  108. Piltner R, Taylor RL (2000) Triangular finite elements with rotational degrees of freedom and enhanced strain modes. Comput Struct 75:361–368

    Google Scholar 

  109. Pimpinelli G (2004) An assumed strain quadrilateral element with drilling degrees of freedom. Finite Elem Anal Des 41:267–283

    Google Scholar 

  110. Wisniewski K, Turska E (2006) Enhanced Allman quadrilateral for finite drilling rotations. Comput Methods Appl Mech Eng 195:6086–6109

    MATH  Google Scholar 

  111. Boutagouga D, Djeghaba K (2016) Nonlinear dynamic co-rotational formulation for membrane elements with in-plane drilling rotational degree of freedom. Eng Comput 33(3):667–697

    Google Scholar 

  112. Long YQ, Xu Y (1994) Generalized conforming triangular membrane element with vertex rigid rotational freedoms. Finite Elem Anal Des 17:259–271

    MATH  Google Scholar 

  113. Long YQ, Xu Y (1994) Generalized conforming quadrilateral membrane element with vertex rigid rotational freedom. Comput Struct 52(4):749–755

    MATH  Google Scholar 

  114. Chen XM, Cen S, Sun JY, Li YG (2015) Four-node generalized conforming membrane elements with drilling DOFs using quadrilateral area coordinate methods. Math Probl Eng 2015:13

    MathSciNet  MATH  Google Scholar 

  115. Gao X, Liu Y, Lv J (2016) A new method applied to the quadrilateral membrane element with vertex rigid rotational freedom. Math Probl Eng 2016:13

    MathSciNet  MATH  Google Scholar 

  116. Choi CK, Chung KY, Lee TY (2001) A direct modification method for strains due to non-conforming modes. Struct Eng Mech 11(3):325–340

    Google Scholar 

  117. Choi C, Lee T, Chung K (2002) Direct modification for non-conforming elements with drilling DOF. Int J Numer Methods Eng 55:1463–1476

    MATH  Google Scholar 

  118. Lee TY, Choi CK (2002) A new quadrilateral 5-node non-conforming membrane element with drilling DOF. Struct Eng Mech 14(6):699–712

    Google Scholar 

  119. Kim KD, Lomboy GR, Voyiadjis GZ (2003) A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom. Int J Numer Methods Eng 58:2177–2200

    MATH  Google Scholar 

  120. Aminpour MA (1992) Direct formulation of a hybrid 4-node shell element with drilling degrees of freedom. Int J Numer Methods Eng 35:997–1013

    MATH  Google Scholar 

  121. Yunus SM (1988) A study of different hybrid elements with and without rotational degrees of freedom for plane stress/plane strain problems. Comput Struct 30:1127–1133

    MATH  Google Scholar 

  122. Aminpour MA (1992) An assumed-stress hybrid 4-node shell element with drilling degrees of freedom. Int J Numer Methods Eng 33:19–38

    MATH  Google Scholar 

  123. To CWS, Liu ML (1994) Hybrid strain based three-node flat triangular shell elements. Finite Elem Anal Des 17:169–203

    MATH  Google Scholar 

  124. Cazzani A, Atluri SN (1993) Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput Mech 11:229–251

    MathSciNet  MATH  Google Scholar 

  125. Rengarajan G, Aminpour MA, Knight NF (1995) Improved assumed-stress hybrid shell element with drilling degrees of freedom for linear stress, buckling and free vibration analyses. Int J Numer Methods Eng 38:1917–1943

    MATH  Google Scholar 

  126. Cannarozzi AA, Cannarozzi M (1995) A displacement scheme with drilling degrees of freedom for plane elements. Int J Numer Methods Eng 38:3443–3452

    MATH  Google Scholar 

  127. Long CS, Geyer S, Groenwold AA (2006) A numerical study of the effect of penalty parameters for membrane elements with independent rotation fields and penalized equilibrium. Finite Elem Anal Des 42:757–765

    Google Scholar 

  128. Choo YS, Choi N, Lee BC (2006) Quadrilateral and triangular plane elements with rotational degrees of freedom based on the hybrid Trefftz method. Finite Elem Anal Des 42:1002–1008

    Google Scholar 

  129. Choi N, Choo YS, Lee BC (2006) A hybrid Trefftz plane elasticity element with drilling degrees of freedom. Comput Methods Appl Mech Eng 195:4095–4105

    MATH  Google Scholar 

  130. Cen S, Zhou MJ, Fu XR (2011) A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions. Comput Struct 89:517–528

    Google Scholar 

  131. Rezaiee-Pajand M, Karkon M (2013) An effective membrane element based on analytical solution. Eur J Mech A Solids 39:268–279

    MathSciNet  MATH  Google Scholar 

  132. Rezaiee-Pajand M, Yaghoobi M (2017) A Hybrid Stress Plane Element with Strain Field. Civ Eng Infrastruct J 50(2):255–275

    Google Scholar 

  133. Zouari W, Hammadi F, Ayad R (2016) Quadrilateral membrane finite elements with rotational DOFs for the analysis of geometrically linear and nonlinear plane problems. Comput Struct 173:139–149

    Google Scholar 

  134. Bucher C (2018) A family of triangular and tetrahedral elements with rotational degrees of freedom. Acta Mech 229:901–910

    MathSciNet  Google Scholar 

  135. Kikuchi F, Okabe M, Fujio H (1999) Modification of the 8-node serendipity element. Comput Methods Appl Mech Eng 179:91–109

    MATH  Google Scholar 

  136. Shang Y, Ouyang W (2018) 4-node unsymmetric quadrilateral membrane element with drilling DOFs insensitive to severe mesh-distortion. Int J Numer Methods Eng 113(10):1589–1606

    MathSciNet  Google Scholar 

  137. Shang Y, Cen S, Qian Z-H, Li C-F (2018) High-performance unsymmetric 3-node triangular membrane element with drilling DOFs can correctly undertake in-plane moments. Eng Comput 35(7):2543–2556

    Google Scholar 

  138. Shang Y, Qian Z-H, Cen S, Li C-F (2019) A simple unsymmetric 4-node 12-DOF membrane element for the modified couple stress theory. Int J Numer Meth Eng 119:807–825

    MathSciNet  Google Scholar 

  139. Daszkiewicz K, Witkowski W, Burzyński S, Chróścielewski J (2019) Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells. Continuum Mech Thermodyn 31(6):1757–1784

    MathSciNet  Google Scholar 

  140. Kebari H, Cassell AC (1991) A stabilized 9-node non-linear shell element. Int J Numer Methods Eng 35:37–61

    MATH  Google Scholar 

  141. Zhang H, Kuang JS (2008) Eight-node membrane element with drilling degrees of freedom for analysis of in-plane stiffness of thick floor plates. Int J Numer Methods Eng 76:2117–2136

    MathSciNet  MATH  Google Scholar 

  142. Madeo A, Casciaro R, Zagari G, Zinno R, Zucco G (2014) A mixed isostatic 16 dof quadrilateral membrane element with drilling rotations, based on Airy stresses. Finite Elem Anal Des 89:52–66

    MathSciNet  Google Scholar 

  143. Rezaiee-Pajand M, Gharaei-Moghadda N, Ramezani M (2019) A new higher-order strain-based plane element. Sci Iran 26(4):2258–2275

    Google Scholar 

  144. Choi CK, Lee WH (1995) Transition membrane elements with drilling freedom for local mesh refinements. Struct Eng Mech 3(1):75–89

    Google Scholar 

  145. Matsubara H, Iraha S, Tomiyama J, Yagawa G (2004) Three-dimensional free mesh method with drilling degrees of freedom (development of TET element included drilling degrees of freedom). Trans Jpn Soc Mech Eng Ser A 70(691):363–368

    Google Scholar 

  146. Tian R, Yagawa G (2007) Allman’s triangle, rotational DOF and partition of unity. Int J Numer Methods Eng 69:837–858

    MATH  Google Scholar 

  147. de Klerk A, Visser AG, Groenwold AA (2008) Lower and upper bound estimation of isotropic and orthotropic fracture mechanics problems using elements with rotational degrees of freedom. Commun Numer Meth Engng 24:335–353

    MathSciNet  MATH  Google Scholar 

  148. Kanda Y, Okada H, Iraha S, Tomiyama J, Murotani K, Yagawa G (2008) Fracture mechanics parameter computation using tetrahedral finite element with drilling degrees of freedoms. Trans Jpn Soc Mech Eng Ser A 74(742):837–844

    Google Scholar 

  149. Eom J, Ko J, Lee BC (2009) A macro plane triangle element from the individual element test. Finite Elem Anal Des 45(6/7):422–430

    Google Scholar 

  150. Wang A-P (2012) A quadrilateral membrane hybrid stress element with drilling degrees of freedom. Acta Mech Sin 28(5):1367–1373

    MathSciNet  MATH  Google Scholar 

  151. Shin CM, Lee BC (2014) Development of a strain-smoothed three-node triangular flat shell element with drilling degrees of freedom. Finite Elem Anal Des 86(2):71–80

    MathSciNet  Google Scholar 

  152. Rojasa F, Andersonb JC, Massonea LM (2016) A nonlinear quadrilateral layered membrane element with drilling degrees of freedom for the modeling of reinforced concrete walls. Eng Struct 124:521–538

    Google Scholar 

  153. Xing C, Zhou C (2016) A singular planar element with rotational degree of freedom for fracture analysis. Theor Appl Fract Mech 86(Part B):239–249

    Google Scholar 

  154. Kefal A, Oterkus E, Tessler A, Spangler JL (2016) A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Eng Sci Technol Int J 19(3):1299–1313

    Google Scholar 

  155. Leonetti L, Garcea G, Nguyen-Xuan H (2017) A mixed node-based smoothed finite element method (MNS-FEM) for elasticity. Eng Comput 33(4):819–834

    Google Scholar 

  156. Nodargi NA, Bisegna P (2017) A novel high-performance mixed membrane finite element for the analysis of inelastic structures. Comput Struct 182:337–353

    Google Scholar 

  157. Yunus SM, Pawlak TP, Cook RD (1991) Solid elements with rotational degrees of freedom: part I-hexahedron elements. Int J Numer Methods Eng 31(3):573–592

    MATH  Google Scholar 

  158. Pawlak TP, Yunus SM, Cook RD (1991) Solid elements with rotational degrees of freedom: part II-tetrahedron elements. Int J Numer Methods Eng 31(3):593–610

    MATH  Google Scholar 

  159. Sze KY, Ghali A (1993) A hybrid brick element with rotational degrees of freedom. Comput Mech 12(3):147–163

    MATH  Google Scholar 

  160. Choi CK, Chung KY (1996) Three dimensional non-conforming 8-node solid elements with rotational degrees of freedom. Struct Eng Mech 4(5):569–586

    Google Scholar 

  161. Sze KY, Soh AK, Sim YS (1996) An explicit hybrid-stabilized solid element with rotational degrees of freedom. Int J Numer Methods Eng 39(17):2987–3005

    MATH  Google Scholar 

  162. Sze KY, Pan YS (2000) Hybrid stress tetrahedral elements with Allman’s rotational D.O. F.s. Int J Numer Methods Eng 48(7):1055–1070

    MATH  Google Scholar 

  163. Matsubara H, Iraha S, Tomiyama J, Yamashiro T, Yagawa G (2004) Free mesh method using a tetrahedral element including vertex rotations. Journal of Structural Mechanics and Earthquake Engineering (JSCE) 766(I-68):97–107

    Google Scholar 

  164. Tian R, Matsubara H, Yagawa G (2006) Advanced 4–node tetrahedrons. Int J Numer Methods Eng 68(12):1209–1231

    MATH  Google Scholar 

  165. Meftah K, Ayad R, Hecini M (2013) A new 3D 6-node solid finite element based upon the “Space Fibre Rotation” concept. Eur J Comput Mech 22(1):1–29

    Google Scholar 

  166. Meftah K, Sedira L, Zouari W, Ayad R, Hecini M (2015) A multilayered 3D hexahedral finite element with rotational DOFs. Eur J Comput Mech 24(3):107–128

    MATH  Google Scholar 

  167. Nodargi NA, Caselli F, Artioli E, Bisegna P (2016) A mixed tetrahedral element with nodal rotations for large-displacement analysis of inelastic structures. Int J Numer Methods Eng 108(7):722–749

    MathSciNet  Google Scholar 

  168. Boujelben A, Ibrahimbegovic A (2017) Finite-strain three-dimensional solids with rotational degrees of freedom: non-linear statics and dynamics. Adv Model and Simul Eng Sci 4:3

    Google Scholar 

  169. Guerraiche KH, Bouzidi L, Belounar L (2018) A new eight nodes brick finite element based on the strain approach. J Solid Mech 10(1):186–199

    Google Scholar 

  170. Zouari W, Hammadi F, Assarar M, Ayad R (2018) Updated Lagrangian formulations of two hexahedral elements with rotational DOFs. Eur J Comput Mech 27(2):143–162

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This article was supported by: La Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Boutagouga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutagouga, D. A Review on Membrane Finite Elements with Drilling Degree of Freedom. Arch Computat Methods Eng 28, 3049–3065 (2021). https://doi.org/10.1007/s11831-020-09489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09489-z

Navigation