Skip to main content
Log in

Soliton solutions of generalized \((3+1)\)-dimensional Yu–Toda–Sasa–Fukuyama equation using Lie symmetry analysis

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze generalized \((3+1)\)-dimensional Yu–Toda–Sasa–Fukuyama(YTSF) equation, a nonlinear evolution equation to understand pulse behavior when variations are strong. Using the Lie symmetry reduction, the generalized form of (3+1)-dimensional YTSF equation is reduced to ordinary differential equations. We introduce the main result for the analysis of soliton solutions that accounts for perturbation and dispersion of the waveform including linear and nonlinear effects. We discuss soliton interactions as a key feature of soliton based telecommunication transmission systems. Solitons propagate at distinct speed and interact quite strongly with each other having beaming correspondence. Though the interaction is transient, the coherence is diagonally placed. The solitons after perfectly elastic collisions recover their shape, amplitude and velocity except phase shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this article.

References

  1. Wang, L., et al.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell–Bloch equations. Ann. Phys. 359, 97–114 (2015)

    Article  Google Scholar 

  2. Chai, J., et al.: Conservation laws, bilinear Bäcklund transformations and solitons for a nonautonomous nonlinear Schrödinger equation with external potentials. Commun. Nonlinear Sci. Numer. Simul. 39, 472–480 (2016)

    Article  MathSciNet  Google Scholar 

  3. Zhou, Q., Liu, S.: Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion. Nonlinear Dyn. 81(1–2), 733–738 (2015)

    Article  MathSciNet  Google Scholar 

  4. Jadaun, V., Kumar, S.: Symmetry analysis and invariant solutions of (3+1)-dimensional Kadomtsev–Petviashvili equation. Int. J. Geom. Method Mod. Phys. 15 no. 8, 1850125 (pp 19) (2018)

  5. Zhao, H.-H., Zhao, X.-J., Hao, H.-Q.: Breather-to-soliton conversions and nonlinear wave interactions in a coupled Hirota system. Appl. Math. Lett. 61, 8–12 (2016)

    Article  MathSciNet  Google Scholar 

  6. Jadaun, V., Kumar, S.: Lie symmetry analysis and invariant solutions of (3+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation. Nonlinear Dyn. 93(5), 349–360 (2018)

    Article  Google Scholar 

  7. Ma, W.-X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dauxois and M. Peyrard: Physics of Solitons, Reprint of the Edition, Revised Translation of the 2004, French edn, p. 2010. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  9. Carretero-González, R., Frantzeskakis, D.J., Kevrekidis, P.G.: Nonlinear waves in Bose-Einstein condensates: physical relevance and mathematical techniques. Nonlinearity 21(7), R139–R202 (2008)

    Article  MathSciNet  Google Scholar 

  10. Campbell, D.K., Flach, S., Kivshar, Y.S.: Localizing energy through nonlinearity and discreteness. Phys. Today 57(1), 43–49 (2004)

    Article  Google Scholar 

  11. Campbell, D.K., Rosenau, P., Zaslavsky, G.M.: Introduction: the Fermi–Pasta–Ulam problem–the first fifty years. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2005) no. 1, 015101

  12. Mishagin, K.G., Flach, S., Kanakov, O.I., Ivanchenko, M.V.: q-breathers in discrete nonlinear Schrödinger lattices. N. J. Phys. 10 (2008) no. 7, 073034

  13. Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295(5), 181–264 (1998)

    Article  MathSciNet  Google Scholar 

  14. Flach, S., Ivanchenko, M.V., Kanakov, O.I.: \(q\)-breathers in Fermi-Pasta-Ulam chains: existence, localization, and stability. Phys. Rev. E (3) 73 (2006), no. 3, 036618, 14 pp

  15. Chechin, G.M., Novikova, N.V., Abramenko, A.A.: Bushes of vibrational modes for Fermi-Pasta-Ulam chains. Phys. D 166(3–4), 208–238 (2002)

    Article  MathSciNet  Google Scholar 

  16. Chechin, G.M., Ryabov, D.S., Zhukov, K.G.: Stability of low-dimensional bushes of vibrational modes in the Fermi-Pasta-Ulam chains. Phys. D 203(3–4), 121–166 (2005)

    Article  MathSciNet  Google Scholar 

  17. Rosenau, P.: What is\(\dots \)a compacton? Notices Am. Math. Soc. 52(7), 738–739 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Rosenau, P., Zilburg, A., Compactons, J. Phys. A 51, no. 34, 343001, 136 pp (2018)

  19. Ren, B., Ma, W.-X., Yu, J.: Lump solutions for two mixed Calogero–Bogoyavlenskii–Schiff and Bogoyavlensky–Konopelchenko equations. Commun. Theor. Phys. (Beijing) 71(6), 658–662 (2019)

    Article  MathSciNet  Google Scholar 

  20. Yu, S.-J., et al.: \(N\) soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in \((3+1)\) dimensions. J. Phys. A 31(14), 3337–3347 (1998)

    Article  MathSciNet  Google Scholar 

  21. Deng, G.-F., et al.: Multi-breather wave solutions for a generalized \((3+1)\)-dimensional Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid. Appl. Math. Lett. 98, 177–183 (2019)

    Article  MathSciNet  Google Scholar 

  22. Manam, S.R., Sahoo, T.: Waves past porous structures in a two-layer fluid. J. Eng. Math. 52(4), 355–377 (2005)

    Article  MathSciNet  Google Scholar 

  23. Chen, S.-J., et al.: Abundant exact solutions and interaction phenomena of the \((2+1)\)-dimensional YTSF equation. Anal. Math. Phys. 9(4), 2329–2344 (2019)

    Article  MathSciNet  Google Scholar 

  24. Chen, H., Xu, Z., Dai, Z.: Rogue wave for the \((3+1)\)-dimensional Yu-Toda-Sasa-Fukuyama equation, Abstr. Appl. Anal. 2014, Art. ID 378167, 7 pp

  25. Pu, Z., Pan, Z.: Cross soliton and breather soliton for the \((3+1)\)-dimensional Yu–Toda–Sasa–Fukuyama equation, Adv. Difference Equ. 2019, Paper No. 223, 8 pp

  26. Ali, A., Seadawy, A.R., Lu, D.: New solitary wave solutions of some nonlinear models and their applications, Adv. Difference Equ. 2018, Paper No. 232, 12 pp

  27. Zhao, Z., He, L.: Multiple lump solutions of the \((3+1)\)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Appl. Math. Lett. 95, 114–121 (2019)

    Article  MathSciNet  Google Scholar 

  28. Han-Dong, G., Tie-Cheng, X., Bei-Bei, H.: Dynamics of abundant solutions to the \((3+1)\)-dimensional generalized Yu–Toda–Sasa–Fukuyama equation. Appl. Math. Lett. 105, 106301 (2020)

    Article  MathSciNet  Google Scholar 

  29. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  30. Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  31. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  32. Wang, M., Li, X., Zhang, J.: The \((\frac{G^{\prime }}{G})\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  33. Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications, Mathematics in Science and Engineering, 161. Academic Press Inc, New York (1982)

    MATH  Google Scholar 

  34. Bäcklund transformations, the inverse scattering method, solitons, and their applications, Lecture Notes in Mathematics, Vol. 515, Springer-Verlag, Berlin, 1976

  35. Wazwaz, A.-M.: Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations. Appl. Math. Comput. 203(2), 592–597 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations, Applied Mathematical Sciences, 81. Springer, New York (1989)

    Book  Google Scholar 

  37. Olver, P.J.: Applications of Lie Groups to Differential Equations, Second Edition, Graduate Texts in Mathematics, 107. Springer, New York (1993)

    Book  Google Scholar 

Download references

Funding

This work was supported by Indian Institute of Technology Delhi (Grant No. IITDHRD’M101973G AWC9216 IC7569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishakha Jadaun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadaun, V., Singh, N.R. Soliton solutions of generalized \((3+1)\)-dimensional Yu–Toda–Sasa–Fukuyama equation using Lie symmetry analysis. Anal.Math.Phys. 10, 42 (2020). https://doi.org/10.1007/s13324-020-00385-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00385-0

Keywords

Navigation