Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 3, 2020

Influence of trisilanol isooctyl POSS content on the structure, morphology and rheological properties of thermoplastic polyurethane (TPU)

  • Rudinei Fiorio ORCID logo EMAIL logo , Chaitanya Danda and João Maia ORCID logo

Abstract

In this study, thermoplastic polyurethanes (TPUs) containing trisilanol isooctyl polyhedral oligomeric silsesquioxane (POSS), a reactive nanofiller, were synthesized and characterized rheologically and morphologically, and the effects of POSS content on the melt thermal stability of the TPUs are investigated. Samples containing 0, 0.23, 0.57, 1.14, and 2.23% (w/w) POSS were synthesized by reactive extrusion and characterized by Fourier transform infrared spectroscopy (FTIR), oscillatory and extensional rheometry, atomic force microscopy (AFM), and small- and wide-angle X-ray scattering (SAXS and WAXS, respectively). The rheological properties of molten TPU are time-dependent and the melt thermal stability of the TPU is maximal at 1.14% of POSS. The addition of 0.23 and 0.57% POSS promotes strain-hardening at low extensional strain rates (0.01 and 0.10 s−1), not affecting the extensional characteristics at higher strain rates. The addition of increasing amounts of POSS leads to the formation of POSS-rich clusters well dispersed in the TPU matrix. SAXS and WAXS results show that the POSS domains are amorphous and that POSS does not modify the crystalline structure of TPU. Therefore, this work indicates that synthesizing TPU in the presence of trisilanol isooctyl POSS can increase the melt thermal stability of the polymer, facilitating its processing.


Corresponding author: Rudinei Fiorio, Instituto Federal de EducaçãoCiência e Tecnologia do Rio Grande do Sul, Avelino Antônio de Souza, 1730 Nossa Sra. de Fátima, Caxias do Sul, Rio Grande do Sul, 95043-700, Brazil, E-mail:

Award Identifier / Grant number: 247462/2013-6

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for the financial support (grant no. 247462/2013-6).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest.

References

1. Martin, D., Osman, A., Andriani, Y., Edwards, G. Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In Advances in Polymer Nanocomposites: Types and Applications; Gao, F., Ed. Woodhead Publishing Limited: Cambridge, 2012, pp. 321–350.10.1533/9780857096241.2.321Search in Google Scholar

2. Oertel, G., Ed. Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties; Hanser Publishers: Munich, 1994, 2nd ed.Search in Google Scholar

3. Yoon, P. J., Han, C. D. Effect of thermal history on the rheological behavior of thermoplastic polyurethanes. Macromolecules 2000, 33, 2171–2183. https://doi.org/10.1021/ma991741r.Search in Google Scholar

4. Fiorio, R., Zattera, A. J., Ferreira, C. A. Effects of the incorporation of low‐molecular‐weight diurethanes on thermal and rheological properties of thermoplastic polyurethane. J. Appl. Polym. Sci. 2009, 112, 2896–2905. https://doi.org/10.1002/app.29904.Search in Google Scholar

5. Hentschel, T., Munstedt, H. Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer 2001, 42, 3195–3203. https://doi.org/10.1016/s0032-3861(00)00489-4.Search in Google Scholar

6. Lu, Q. W., Hernandez-Hernandez, M. E., Macosko, C. W. Explaining the abnormally high flow activation energy of thermoplastic polyurethanes. Polymer 2003, 44, 3309–3318. https://doi.org/10.1016/s0032-3861(03)00223-4.Search in Google Scholar

7. Agnol, L. D., Ceratti, H. L., Favero, D., Rempel, S. P., Schiavo, L. S. A., Ernzen, J. R., Dias, F. T. G., Bianchi, O. Transurethanization reaction as an alternative for melt modification of polyamide 6. J. Polym. Res. 2019, 26, 112. https://doi.org/10.1007/s10965-019-1787-4.Search in Google Scholar

8. Han, C. D. Rheology and processing of polymeric materials. Polymer Rheology, vol 1; Oxford University Press: Oxford, 2007.10.1093/oso/9780195187823.001.0001Search in Google Scholar

9. Janowski, B., Pielichowski, K. Thermo(oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochim. Acta 2008, 478, 51–53. https://doi.org/10.1016/j.tca.2008.08.015.Search in Google Scholar

10. Lewicki, J. P., Pielichowski, K., Jancia, M., Hebda, E., Albo, R. L., Maxwell, R. S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stabil. 2014, 104, 50–56. https://doi.org/10.1016/j.polymdegradstab.2014.03.025.Search in Google Scholar

11. Pagacz, J., Hebda, E., Michałowski, S., Ozimek, J., Sternik, D., Pielichowski, K. Polyurethane foams chemically reinforced with POSS – thermal degradation studies. Thermochim. Acta 2016, 642, 95–104. https://doi.org/10.1016/j.tca.2016.09.006.Search in Google Scholar

12. Ramirez, D., Nanclares, J., Sponton, M., Polo, M., Estenoz, D., Jaramillo, F. Effect of cooling induced crystallization upon the properties of segmented thermoplastic polyurethanes. J. Polym. Eng. 2017, 37, 471–480. https://doi.org/10.1515/polyeng-2016-0106.Search in Google Scholar

13. Fina, A., Monticelli, O., Camino, G. POSS-based hybrids by melt/reactive blending. J. Mater. Chem. 2010, 20, 9297–9305. https://doi.org/10.1039/c0jm00480d.Search in Google Scholar

14. Kuo, S. W., Chang, F. C. POSS related polymer nanocomposites. Prog. Polym. Sci. 2011, 36, 1649–1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002.Search in Google Scholar

15. Norouzi, S., Mohseni, M., Yahyaei, H. The role of POSS functionality on induced deviation of nano and micromechanical properties of UV curable urethane acrylate nanocomposite coatings. J. Polym. Res. 2020, 27, 125. https://doi.org/10.1007/s10965-020-02114-4.Search in Google Scholar

16. Joshi, M., Butola, B. S. Polymeric nanocomposites – polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J. Macromol. Sci. – Pol. R. 2004, 44, 389–410. https://doi.org/10.1081/mc-200033687.Search in Google Scholar

17. Madbouly, S. A., Otaigbe, J. U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog. Polym. Sci. 2009, 34, 1283–1332. https://doi.org/10.1016/j.progpolymsci.2009.08.002.Search in Google Scholar

18. Raftopoulos, K. N., Janowski, B., Apekis, L., Pissis, P., Pielichowski, K. Direct and indirect effects of POSS on the molecular mobility of polyurethanes with varying segment Mw. Polymer 2013, 54, 2745–2754. https://doi.org/10.1016/j.polymer.2013.03.036.Search in Google Scholar

19. Zhao, B., Xu, S., Adeel, M., Zheng, S. Formation of POSS-POSS interactions in polyurethanes: from synthesis, morphologies to shape memory properties of materials. Polymer 2019, 160, 82–92. https://doi.org/10.1016/j.polymer.2018.11.026.Search in Google Scholar

20. Fiorio, R., Pistor, V., Zattera, A. J., Petzhold, C. L. Polymerization kinetics of polyurethanes containing trisilanol isooctyl polyhedral oligomeric silsesquioxane. J. Elastom. Plast. 2014, 46, 594–610. https://doi.org/10.1177/0095244313480981.Search in Google Scholar

21. Barroso, V. C., Covas, J. A., Maia, J. M. Sources of error and other difficulties in extensional rheometry revisited: commenting and complementing a recent paper by T. Schweizer. Rheol. Acta 2002, 41, 154–161. https://doi.org/10.1007/s003970200014.Search in Google Scholar

22. Corish, P. Identification and analysis of polyurethane rubbers by infrared spectroscopy. Anal. Chem. 1959, 31, 1298–1306. https://doi.org/10.1021/ac60152a015.Search in Google Scholar

23. Fiorio, R., Pistor, V., Zattera, A. J., Petzhold, C. L. Influence of synthesis temperature on thermal properties of thermoplastic polyurethane prepared by torque rheometer. Polym. Eng. Sci. 2012, 52, 1678–1684. https://doi.org/10.1002/pen.23117.Search in Google Scholar

24. Xiaoxia, J., Yiwen, H., Qilong, Z. Effect of thermal processing temperature on the microphase separation and mechanical properties of BAMO/THF polyurethane. J. Polym. Eng. 2017, 37, 169–176. https://doi.org/10.1515/polyeng-2015-0509.Search in Google Scholar

25. Hui, B., Ye, L. Polyurethane–imide–polyhedral oligomeric silsesquioxane hybrid nano-composites. J. Therm. Anal. Calorim. 2019, 136, 2383–2396. https://doi.org/10.1007/s10973-018-7872-9.Search in Google Scholar

26. Nanda, A. K., Wicks, D. A., Madbouly, S. A., Otaigbe, J. U. Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules 2006, 39, 7037–7043. https://doi.org/10.1021/ma060809h.Search in Google Scholar

27. Huang, J., Jiang, P., Wen, Y., Deng, J., He, J. Soy-castor oil based polyurethanes with octaphenylsilsesquioxanetetraol double-decker silsesquioxane in the main chains. RSC Adv. 2016, 6, 69521–69529. https://doi.org/10.1039/c6ra12790h.Search in Google Scholar

28. Zhang, Q., He, H., Xi, K., Huang, X., Yu, X., Jia, X. Synthesis of N-phenylaminomethyl POSS and its utilization in polyurethane. Macromolecules 2011, 44, 550–557. https://doi.org/10.1021/ma101825j.Search in Google Scholar

29. Asensio, M., Costa, V., Nohales, A., Bianchi, O., Gómez, C. M. Tunable structure and properties of segmented thermoplastic polyurethanes as a function of flexible segment. Polymers-Basel 2019, 11, 1910. https://doi.org/10.3390/polym11121910.Search in Google Scholar PubMed PubMed Central

30. Javni, I., Bilić, O., Bilić, N., Petrović, Z. S., Eastwood, E. A., Zhang, F., Ilavský, J. Thermoplastic polyurethanes with controlled morphology based on methylenediphenyldiisocyanate/isosorbide/butanediol hard segments. Polym. Int. 2015, 64, 1607–1616. https://doi.org/10.1002/pi.4960.Search in Google Scholar

31. Androsch, R., Blackwell, J., Chvalun, S., Festel, G., Eisenbach, C. X‐ray investigation of the structure of polyurethane elastomers based on 1,5‐naphthalene diisocyanate. Acta Polym. 1997, 48, 363–368. https://doi.org/10.1002/actp.1997.010480903.Search in Google Scholar

32. Briber, R. M., Thomas, E. L. Investigation of two crystal forms in MDI/BDO-based polyurethanes. J. Macromol. Sci. B 1983, 22, 509–528. https://doi.org/10.1080/00222348308224773.Search in Google Scholar

33. Nunes, R. C. R., Pereira, R. A., Fonseca, J. L. C., Pereira, M. R. X-ray studies on compositions of polyurethane and sílica. Polym. Test. 2001, 20, 707–712. https://doi.org/10.1016/s0142-9418(01)00007-1.Search in Google Scholar

34. Wang, L. F. Studies on fluorinated polyurethanes by X-ray diffraction and density functional theory calculations with periodic boundary conditions. Polymer 2007, 48, 7414–7418. https://doi.org/10.1016/j.polymer.2007.10.017.Search in Google Scholar

35. Bonart, R., Morbitzer, L., Hentze, G. X-ray investigations concerning the physical structure of cross-linking in urethane elastomers. II. Butanediol as chain extender. J. Macromol. Sci. B 1969, 3, 337–356. https://doi.org/10.1080/00222346908205099.Search in Google Scholar

36. Wang, L. F., Wei, Y. H. Effect of soft segment length on properties of fluorinated polyurethanes. Colloids Surf. B 2005, 41, 249–255. https://doi.org/10.1016/j.colsurfb.2004.12.014.Search in Google Scholar

37. Kojio, K., Nozaki, S., Takahara, A., Yamasaki, S. Influence of chemical structure of hard segments on physical properties of polyurethane elastomers: a review. J. Polym. Res. 2020, 27, 140. https://doi.org/10.1007/s10965-020-02090-9.Search in Google Scholar

38. Martin, D. J., Meijs, G. F., Gunatillake, P. A., McCarthy, S. J., Renwick, G. M. The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. II. SAXS‐DSC annealing study. J. Appl. Polym. Sci. 1997, 64, 803–817. https://doi.org/10.1002/(sici)1097-4628(19970425)64:4<803::aid-app20>3.0.co;2-t.10.1002/(SICI)1097-4628(19970425)64:4<803::AID-APP20>3.0.CO;2-TSearch in Google Scholar

39. Raftopoulos, K. N., Pielichowski, K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog. Polym. Sci. 2016, 52, 136–187. https://doi.org/10.1016/j.progpolymsci.2015.01.003.Search in Google Scholar

40. Silva, J, Andrade, R., Huang, R., Liu, J., Cox, M., Maia, J. M. Rheological behavior and structure development in thermoplastic polyurethanes under uniaxial extensional flow. J. Non-Newton Fluid 2015, 222, 96–103. https://doi.org/10.1016/j.jnnfm.2014.09.005.Search in Google Scholar

41. Li, X., Lu, Y., Wang, H., Poselt, E., Eling, B., Men, Y. Crystallization of hard segments in MDI/BD-based polyurethanes deformed at elevated temperature and their dependence on the MDI/BD content. Eur. Polym. J. 2017, 97, 423–436. https://doi.org/10.1016/j.eurpolymj.2017.10.014.Search in Google Scholar

Received: 2020-06-24
Accepted: 2020-08-11
Published Online: 2020-09-03
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0154/html
Scroll to top button