Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Poly(ADP-ribose) polymerase inhibition: past, present and future

Abstract

The process of poly(ADP-ribosyl)ation and the major enzyme that catalyses this reaction, poly(ADP-ribose) polymerase 1 (PARP1), were discovered more than 50 years ago. Since then, advances in our understanding of the roles of PARP1 in cellular processes such as DNA repair, gene transcription and cell death have allowed the investigation of therapeutic PARP inhibition for a variety of diseases — particularly cancers in which defects in DNA repair pathways make tumour cells highly sensitive to the inhibition of PARP activity. Efforts to identify and evaluate potent PARP inhibitors have so far led to the regulatory approval of four PARP inhibitors for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic potential in treating non-oncological diseases. This Review provides a timeline of PARP biology and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a role and highlights key opportunities and challenges in the field, such as counteracting PARP inhibitor resistance during cancer therapy and repurposing PARP inhibitors for the treatment of non-oncological diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PARylation, PAR removal and the structure of PARP1.
Fig. 2: Selected preclinical PARP research milestones.
Fig. 3: Molecular mechanisms of the anticancer effects of PARP inhibitors.
Fig. 4: PARP inhibition in treating non-oncological diseases.

Similar content being viewed by others

References

  1. Gibson, B. A. & Kraus, W. L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    PubMed  CAS  Google Scholar 

  2. Kraus, W. L. PARPs and ADP-ribosylation: 50 years … and counting. Mol. Cell 58, 902–910 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Cohen, M. S. & Chang, P. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat. Chem. Biol. 14, 236–243 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Schuhwerk, H., Atteya, R., Siniuk, K. & Wang, Z. Q. PARPing for balance in the homeostasis of poly(ADP-ribosyl)ation. Semin. Cell Dev. Biol. 63, 81–91 (2017).

    PubMed  CAS  Google Scholar 

  5. Palazzo, L. & Ahel, I. PARPs in genome stability and signal transduction: implications for cancer therapy. Biochem. Soc. Trans. 46, 1681–1695 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Chambon, P., Weill, J. D., Doly, J., Strosser, M. T. & Mandel, P. On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem. Biophys. Res. Commun. 25, 638–643 (1966). This study is the first to describe the formation of PAR.

    CAS  Google Scholar 

  7. Nishizuka, Y., Ueda, K., Nakazawa, K. & Hayaishi, O. Studies on the polymer of adenosine diphosphate ribose. I. Enzymic formation from nicotinamide adenine dinuclotide in mammalian nuclei. J. Biol. Chem. 242, 3164–3171 (1967). This study is the first to identify the enzyme PARP1.

    PubMed  CAS  Google Scholar 

  8. Ueda, K., Reeder, R. H., Honjo, T., Nishizuka, Y. & Hayaishi, O. Poly adenosine diphosphate ribose synthesis associated with chromatin. Biochem. Biophys. Res. Commun. 31, 379–385 (1968).

    PubMed  CAS  Google Scholar 

  9. Otake, H., Miwa, M., Fujimura, S. & Sugimura, T. Binding of ADP-ribose polymer with histone. J. Biochem. 65, 145–146 (1969).

    PubMed  CAS  Google Scholar 

  10. Yamada, M., Miwa, M. & Sugimura, T. Studies on poly (adenosine diphosphate-ribose): X. properties of a partially purified poly (adenosine diphosphate-ribose) polymerase. Arch. Biochem. Biophys. 146, 579–586 (1971).

    PubMed  CAS  Google Scholar 

  11. Juarez-Salinas, H., Sims, J. L. & Jacobson, M. K. Poly(ADP-ribose) levels in carcinogen-treated cells. Nature 282, 740–741 (1979). This study documents an increase in PAR formation following DNA damage.

    PubMed  CAS  Google Scholar 

  12. Benjamin, R. C. & Gill, D. M. ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage in DNA. J. Biol. Chem. 255, 10493–10501 (1980).

    PubMed  CAS  Google Scholar 

  13. Purnell, M. R. & Whish, W. J. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem. J. 185, 775–777 (1980). This study describes the synthesis of the first PARP inhibitor, 3-AB.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C. & Mandel, P. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc. Natl Acad. Sci. USA 79, 3423–3427 (1982).

    PubMed  CAS  Google Scholar 

  15. Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. (ADP-ribose) participates in DNA excision repair. Nature 283, 593–596 (1980). This study is the first demonstration of the inhibition of DNA repair and increased cytotoxicity of a DNA-methylating agent by a PARP inhibitor.

    PubMed  CAS  Google Scholar 

  16. Sims, J. L., Berger, S. J. & Berger, N. A. Poly(ADP-ribose) polymerase inhibitors preserve nicotinamide adenine dinucleotide and adenosine 5′-triphosphate pools in DNA damaged cells: mechanism of stimulation of unscheduled DNA synthesis. Biochemistry 22, 5188–5194 (1983). This study marks the formulation of the ‘Berger hypothesis’, describing how the activation of PARP can lead to depletion of cellular NAD + and ATP levels.

    PubMed  CAS  Google Scholar 

  17. Schraufstatter, I. U., Hinshaw, D. B., Hyslop, P. A., Spragg, R. G. & Cochrane, C. G. Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest. 77, 1312–1320 (1986).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Suto, M. J., Turner, W. R., Arundel-Suto, C. M., Werbel, L. M. & Sebolt-Leopold, J. S. Dihydroisoquinolinones: the design and synthesis of a new series of potent inhibitors of poly(ADP- ribose) polymerase. Anticancer Drug Des. 6, 107–117 (1991).

    PubMed  CAS  Google Scholar 

  19. Arundel-Suto, C. M., Scavone, S. V., Turner, W. R., Suto, M. J. & Sebolt-Leopold, J. S. Effect of PD 128763, a new potent inhibitor of poly(ADP-ribose) polymerase, on X-ray-induced cellular recovery processes in Chinese hamster V79 cells. Rad. Res. 126, 367–371 (1991).

    CAS  Google Scholar 

  20. Banasik, M., Komura, H., Shimoyama, M. & Ueda, K. Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J. Biol. Chem. 267, 1569–1575 (1992). This study identifies several commercially available compounds that inhibit PARP. These molecules served as templates for further PARP inhibitor design and development efforts.

    PubMed  CAS  Google Scholar 

  21. Satoh, M. S. & Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358 (1992). This is the first demonstration of PARP ‘trapping’.

    PubMed  CAS  Google Scholar 

  22. Zhang, J., Dawson, V. L., Dawson, T. M. & Snyder, S. H. Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. Science 263, 687–689 (1994).

    PubMed  CAS  Google Scholar 

  23. Heller, B. et al. Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J. Biol. Chem. 270, 11176–11180 (1995).

    PubMed  CAS  Google Scholar 

  24. Wang, Z. Q. et al. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 9, 509–520 (1995). This study describes the generation of the Parp1-knockout mouse.

    PubMed  CAS  Google Scholar 

  25. Szabo, C., Zingarelli, B., O’Connor, M. & Salzman, A. L. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc. Natl Acad. Sci. USA 93, 1753–1758 (1996). This study describes how PARP activation occurs in response to nitrosative stress and also describes the protective effect of PARP inhibition against cell death.

    PubMed  CAS  Google Scholar 

  26. Ruf, A., Mennissier de Murcia, J., de Murcia, G. & Schulz, G. E. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc. Natl Acad. Sci. USA 93, 7481–7485 (1996).

    PubMed  CAS  Google Scholar 

  27. Szabo, C. et al. Inhibition of poly (ADP-ribose) synthetase attenuates neutrophil recruitment and exerts anti-inflammatory effects. J. Exp. Med. 186, 1041–1049 (1997). This study demonstrates that PARP inhibition can suppress inflammation.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang, Z. Q. et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev. 11, 2347–2358 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. de Murcia, J. M. et al. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl Acad. Sci. USA 94, 7303–7307 (1997).

    PubMed  Google Scholar 

  30. Meisterernst, M., Stelzer, G. & Roeder, R. G. Poly(ADP-ribose) polymerase enhances activator-dependent transcription in vitro. Proc. Natl Acad. Sci. USA 94, 2261–2265 (1997). This study is the first to link PARP to gene transcription events.

    PubMed  CAS  Google Scholar 

  31. Rawling, J. M. & Alvarez-Gonzalez, R. TFIIF, a basal eukaryotic transcription factor, is a substrate for poly(ADP-ribosyl)ation. Biochem. J. 324, 249–253 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Eliasson, M. J. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3, 1089–1095 (1997).

    PubMed  CAS  Google Scholar 

  33. Zingarelli, B., Cuzzocrea, S., Zsengeller, Z., Salzman, A. L. & Szabo, C. Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc. Res. 36, 205–215 (1997).

    PubMed  CAS  Google Scholar 

  34. Virag, L., Salzman, A. L. & Szabo, C. Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J. Immunol. 161, 3753–3759 (1998). This study shows PARP overactivation promotes a regulated form of cell necrosis in oxidatively stressed cells.

    PubMed  CAS  Google Scholar 

  35. Amé, J. C. et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17860–17868 (1999). This is the first study to identify PARP2, which then stimulated the search for other PARPs and led to the identification of the PARP superfamily.

    PubMed  Google Scholar 

  36. Hassa, P. O. & Hottiger, M. O. A role of poly (ADP-ribose) polymerase in NF-κB transcriptional activation. Biol. Chem. 380, 953–959 (1999).

    PubMed  CAS  Google Scholar 

  37. Oliver, F. J. et al. Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J. 18, 4446–4454 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Oei, S. L. & Ziegler, M. ATP for the DNA ligation step in base excision repair is generated from poly(ADP-ribose). J. Biol. Chem. 275, 23234–23239 (2000).

    PubMed  CAS  Google Scholar 

  39. Soriano, F. G. et al. Diabetic endothelial dysfunction: the role of poly (ADP-ribose) polymerase activation. Nat. Med. 7, 108–113 (2001). This study is the first to link PARP activation to diabetic complications.

    CAS  Google Scholar 

  40. Simbulan-Rosenthal, C. M. et al. Misregulation of gene expression in primary fibroblasts lacking poly(ADP-ribose) polymerase. Proc. Natl Acad. Sci. USA 97, 11274–11279 (2000).

    PubMed  CAS  Google Scholar 

  41. Jagtap, P. et al. Novel phenanthridinone inhibitors of poly(adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit. Care Med. 30, 1071–1082 (2002).

    PubMed  CAS  Google Scholar 

  42. Liaudet, L. et al. Activation of poly(ADP-ribose) polymerase is a central mechanism of lipopolysaccharide-induced acute pulmonary inflammation. Am. J. Resp. Crit. Care Med. 165, 372–377 (2002).

    PubMed  Google Scholar 

  43. Yu, S. W. et al. Mediation of poly(ADP-ribose) polymerase-1- dependent cell death by apoptosis-inducing factor. Science 297, 259–263 (2002).

    PubMed  CAS  Google Scholar 

  44. Veres, B. et al. The novel phenanthridinone inhibitor of poly(ADP-ribose) synthetase (PJ34) protects mice against LPS induced septic shock by decreasing inflammatory response and enhancing the cytoprotective Akt/protein kinase B pathway. Biochem. Pharmacol. 65, 1373–1382 (2003).

    PubMed  CAS  Google Scholar 

  45. Menissier de Murcia, J. et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255–2263 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Schreiber, V., Dantzer, F., Ame, J. C. & de Murcia, G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528 (2006).

    PubMed  CAS  Google Scholar 

  47. Jagtap, P. G. et al. Discovery of potent poly(ADP-ribose) polymerase-1 inhibitors from the modification of indeno[1,2-c]isoquinolinone. J. Med. Chem. 48, 5100–5103 (2005).

    PubMed  CAS  Google Scholar 

  48. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    PubMed  CAS  Google Scholar 

  49. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005). The studies by Farmer et al. and Bryant et al. (2005) together are the first to identify the synthetic lethality of PARP inhibitors in BRCA-mutant cells and tumours.

    PubMed  CAS  Google Scholar 

  50. Thomas, H. D. et al. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther. 6, 945–956 (2007).

    PubMed  CAS  Google Scholar 

  51. Menear, K. A. et al. 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem. 51, 6581–6591 (2008).

    PubMed  CAS  Google Scholar 

  52. Andrabi, S. A. et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl Acad. Sci. USA 103, 18308–18313 (2006). This study is the first to recognize PAR as an independent mediator of cell death.

    PubMed  CAS  Google Scholar 

  53. Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Langelier, M. F., Planck, J. L., Roy, S. & Pascal, J. M. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336, 728–732 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Kang, H. C. et al. Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc. Natl Acad. Sci. USA 108, 14103–14108 (2011).

    PubMed  CAS  Google Scholar 

  56. DaRosa, P. A. et al. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 517, 223–226 (2015).

    PubMed  CAS  Google Scholar 

  57. Andrabi, S. A. et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc. Natl Acad. Sci. USA 111, 10209–10214 (2014).

    PubMed  CAS  Google Scholar 

  58. Wright, R. H. et al. ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science 352, 1221–1225 (2016).

    PubMed  CAS  Google Scholar 

  59. Kam, T. I. et al. Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018). This study describes PAR-related protein modification as a contributor to neurodegeneration.

    PubMed  PubMed Central  Google Scholar 

  60. Zimmermann, M. et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559, 285–289 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Müller, K. H. et al. Poly(ADP-ribose) links the DNA damage response and biomineralization. Cell Rep. 27, 3124–3138 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Caron, M. C. et al. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat. Commun. 10, 2954 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. Ruiz, P. D. et al. MacroH2A1 regulation of poly(ADP-ribose) synthesis and stability prevents necrosis and promotes DNA repair. Mol. Cell Biol. 40, e00230–19 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Masutani, M. et al. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc. Natl Acad. Sci. USA 96, 2301–2304 (1999).

    PubMed  CAS  Google Scholar 

  65. Pascal, J. M. & Ellenberger, T. The rise and fall of poly(ADP-ribose): an enzymatic perspective. DNA Repair 32, 10–16 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Langelier, M. F., Eisemann, T., Riccio, A. A. & Pascal, J. M. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr. Opin. Struct. Biol. 53, 187–198 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Kraus, W. L. & Hottiger, M. O. PARP-1 and gene regulation: progress and puzzles. Mol. Asp. Med. 34, 1109–1123 (2013).

    CAS  Google Scholar 

  68. Ryu, K. W., Kim, D. S. & Kraus, W. L. New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem. Rev. 115, 2453–2481 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Wang, Y., Luo, W. & Wang, Y. PARP-1 and its associated nucleases in DNA damage response. DNA Repair 81, 102651 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Eisemann, T. & Pascal, J. M. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell. Mol. Life Sci. 21, 1–5 (2020).

    Google Scholar 

  71. Donà, F. et al. Poly(ADP-ribosylation) and neoplastic transformation: effect of PARP inhibitors. Curr. Pharm. Biotechnol. 14, 524–536 (2013).

    PubMed  Google Scholar 

  72. Rodríguez, M. I. et al. Deciphering the insights of poly(ADP-ribosylation) in tumor progression. Med. Res. Rev. 35, 678–697 (2015).

    PubMed  Google Scholar 

  73. Bai, P. & Cantó, C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16, 290–295 (2012).

    CAS  Google Scholar 

  74. Vida, A., Márton, J., Mikó, E. & Bai, P. Metabolic roles of poly(ADP-ribose) polymerases. Semin. Cell Dev. Biol. 63, 135–143 (2017).

    PubMed  CAS  Google Scholar 

  75. Gupte, R., Liu, Z. & Kraus, W. L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 31, 101–126 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Kunze, F. A. & Hottiger, M. O. Regulating immunity via ADP-ribosylation: therapeutic implications and beyond. Trends Immunol. 40, 159–173 (2019).

    PubMed  CAS  Google Scholar 

  77. Virág, L., Robaszkiewicz, A., Rodriguez-Vargas, J. M. & Oliver, F. J. Poly(ADP-ribose) signaling in cell death. Mol. Asp. Med. 34, 1153–1167 (2013).

    Google Scholar 

  78. Bürkle, A. & Virág, L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Asp. Med. 34, 1046–1065 (2013).

    Google Scholar 

  79. Jubin, T. et al. Poly ADP-ribose polymerase-1: beyond transcription and towards differentiation. Semin. Cell Dev. Biol. 63, 167–179 (2017).

    PubMed  CAS  Google Scholar 

  80. Bürkle, A., Grube, K. & Küpper, J. H. Poly(ADP-ribosyl)ation: its role in inducible DNA amplification, and its correlation with the longevity of mammalian species. Exp. Clin. Immunogenet. 9, 230–240 (1992).

    PubMed  Google Scholar 

  81. Vida, A., Abdul-Rahman, O., Mikó, E., Brunyánszki, A. & Bai, P. Poly(ADP-ribose) polymerases in aging — friend or foe? Curr. Protein Pept. Sci. 17, 705–712 (2016).

    PubMed  CAS  Google Scholar 

  82. Szabó, C. Nicotinamide: a jack of all trades (but master of none?). Int. Care Med. 29, 863–866 (2003).

    Google Scholar 

  83. Burkart, V., Blaeser, K. & Kolb, H. Potent beta-cell protection in vitro by an isoquinolinone-derived PARP inhibitor. Horm. Metab. Res. 31, 641–644 (1999).

    PubMed  CAS  Google Scholar 

  84. Calabrese, C. R. et al. Identification of potent nontoxic poly(ADP-ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies. Clin. Cancer Res. 9, 2711–2718 (2003).

    PubMed  CAS  Google Scholar 

  85. Bowman, K. J., White, A., Golding, B. T., Griffin, R. & Curtin, N. J. Potentiation of anticancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors, NU1025 and NU1064. Br. J. Cancer 78, 1269–1277 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Bowman, K. J., Newell, D. R., Calvert, A. H. & Curtin, N. J. Differential effects of the poly(ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity. Br. J. Cancer 84, 106–112 (2001). This study is the first to describe inhibition of DNA repair and enhancement of the cytotoxicity of topoisomerase 1 poisons by PARP inhibition.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. McDonald, M. C. et al. Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly (ADP-ribose) polymerase on the organ injury and dysfunction caused by haemorrhagic shock. Br. J. Pharmacol. 130, 843–850 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhang, J. et al. GPI 6150 prevents H2O2 cytotoxicity by inhibiting poly(ADP-ribose) polymerase. Biochem. Biophys. Res. Commun. 278, 590–598 (2000).

    PubMed  CAS  Google Scholar 

  89. Nicolescu, A. C., Holt, A., Kandasamy, A. D., Pacher, P. & Schulz, R. Inhibition of matrix metalloproteinase-2 by PARP inhibitors. Biochem. Biophys. Res. Commun. 387, 646–650 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Jones, P. et al. Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J. Med. Chem. 52, 7170–7185 (2009).

    PubMed  CAS  Google Scholar 

  91. Shen, Y. et al. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res. 19, 5003–5015 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Donawho, C. K. et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 13, 2728–2737 (2007).

    PubMed  CAS  Google Scholar 

  93. McGonigle, S. et al. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling. Oncotarget 6, 41307–41323 (2015).

    PubMed  PubMed Central  Google Scholar 

  94. Miknyoczki, S. et al. The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol. Cancer Ther. 6, 2290–2302 (2007).

    PubMed  CAS  Google Scholar 

  95. Tang, Z. et al. BGB-290: A highly potent and specific PARP1/2 inhibitor potentiates anti-tumor activity of chemotherapeutics in patient biopsy derived SCLC models. Cancer Res. 75, S1653 (2015).

    Google Scholar 

  96. Wang, L. et al. Pharmacologic characterization of fluzoparib, a novel poly(ADP-ribose) polymerase inhibitor undergoing clinical trials. Cancer Sci. 110, 1064–1075 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Kim, Y. et al. Neuroprotective effects of a novel poly (ADP-ribose) polymerase-1 inhibitor, JPI-289, in hypoxic rat cortical neurons. Clin. Exp. Pharmacol. Physiol. 44, 671–679 (2017).

    PubMed  CAS  Google Scholar 

  98. Cao, J. et al. Pooled analysis of phase I dose-escalation and dose cohort expansion studies of IMP4297, a novel PARP inhibitor, in Chinese and Australian patients with advanced solid tumors. J. Clin. Oncol. 37, 3059 (2019).

    Google Scholar 

  99. Ferraris, D. V. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J. Med. Chem. 53, 4561–4584 (2010).

    PubMed  CAS  Google Scholar 

  100. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Jain, P. G. & Patel, B. D. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - a recent update. Eur. J. Med. Chem. 165, 198–215 (2019).

    PubMed  CAS  Google Scholar 

  102. Miller, E. G. Stimulation of nuclear poly (adenosine diphosphate-ribose) polymerase activity from HeLa cells by endonucleases. Biochim. Biophys. Acta 395, 191–200 (1975).

    PubMed  CAS  Google Scholar 

  103. Davies, M. I., Halldorsson, H., Nduka, N., Shall, S. & Skidmore, C. J. The involvement of poly(adenosine diphosphate-ribose) in deoxyribonucleic acid repair. Biochem. Soc. Trans. 6, 1056–1057 (1978).

    PubMed  CAS  Google Scholar 

  104. Skidmore, C. J. et al. The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by gamma-radiation and N-methyl-N-nitrosourea. Eur. J. Biochem. 101, 135–142 (1979).

    PubMed  CAS  Google Scholar 

  105. Ben-Hur, E., Chen, C.-C. & Elkind, M. M. Inhibitors of poly(adenosine diphosphoribose)synthetase, examination of metabolic perturbations and enhancement of radiation response in Chinese hamster cells. Cancer Res. 45, 2123–2127 (1985). This is the first demonstration of radiosensitization by PARP inhibition.

    PubMed  CAS  Google Scholar 

  106. Parsons, J. L. & Dianov, G. L. Co-ordination of base excision repair and genome stability. DNA Repair 12, 326–333 (2013).

    PubMed  CAS  Google Scholar 

  107. Krokan, H. E. & Bjørås, M. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583 (2013).

    PubMed  PubMed Central  Google Scholar 

  108. Caldecott, K. W. Protein ADP-ribosylation and the cellular response to DNA strand breaks. DNA Repair 19, 108–113 (2014).

    PubMed  CAS  Google Scholar 

  109. Martin-Hernandez, K., Rodriguez-Vargas, J. M., Schreiber, V. & Dantzer, F. Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Semin. Cell Dev. Biol. 63, 92–101 (2017).

    PubMed  CAS  Google Scholar 

  110. Li, M. & Yu, X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer therapy. Oncogene 34, 3349–3356 (2015).

    PubMed  CAS  Google Scholar 

  111. Dulaney, C., Marcrom, S., Stanley, J. & Yang, E. S. Poly(ADP-ribose) polymerase activity and inhibition in cancer. Semin. Cell Dev. Biol. 63, 144–153 (2017).

    PubMed  CAS  Google Scholar 

  112. Pascal, J. M. The comings and goings of PARP-1 in response to DNA damage. DNA Repair 71, 177–182 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Noël, G. et al. Poly(ADP-ribose) polymerase (PARP-1) is not involved in DNA double-strand break recovery. BMC Cell Biol. 4, 7 (2003).

    PubMed  PubMed Central  Google Scholar 

  114. Ali, M. et al. The clinically active PARP inhibitor AG014699 ameliorates cardiotoxicity but doesn’t enhance the efficacy of doxorubicin despite improving tumour perfusion and radiation response. Mol. Cancer Ther. 10, 2320–2329 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Evers, B. et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res. 14, 3916–3925 (2008).

    PubMed  CAS  Google Scholar 

  116. Haince, J. F. et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem. 283, 1197–1208 (2008).

    PubMed  CAS  Google Scholar 

  117. Hochegger, H. et al. Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO J. 25, 1305–1314 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Schultz, N., Lopez, E., Saleh-Gohari, N. & Helleday, T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res. 31, 4959–4964 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Hanzlikova, H. et al. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell 71, 319–331.e3 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Kedar, P. S., Stefanick, D. F., Horton, J. K. & Wilson, S. H. Increased PARP-1 association with DNA in alkylation damaged, PARP-inhibited mouse fibroblasts. Mol. Cancer Res. 10, 360–368 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps17 (2016).

    PubMed  Google Scholar 

  122. Murai, J. et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 13, 433–443 (2014).

    PubMed  CAS  Google Scholar 

  123. Zandarashvili, L. et al. Structural basis for allosteric PARP-1 retention on DNA breaks. Science. 368, eaax6367 (2020).

    PubMed  CAS  Google Scholar 

  124. Min, A. & Im, S. A. PARP inhibitors as therapeutics: beyond modulation of PARylation. Cancers 12, 394 (2020).

    PubMed Central  CAS  Google Scholar 

  125. Petermann, E., Ziegler, M. & Oei, S. L. ATP-dependent selection between single nucleotide and long patch base excision repair. DNA Repair 2, 1101–1114 (2003).

    PubMed  CAS  Google Scholar 

  126. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. & Earnshaw, W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347 (1994). This is the first demonstration of PARP cleavage and its link to apoptosis.

    PubMed  CAS  Google Scholar 

  127. Nicholson, D. W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    PubMed  CAS  Google Scholar 

  128. Curtin, N. J. PARP inhibitors for cancer therapy. Expert. Rev. Mol. Med. 7, 1–20 (2005).

    PubMed  Google Scholar 

  129. Calabrese, C. R. et al. Preclinical evaluation of a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor, AG14361, with significant anticancer chemo- and radio-sensitization activity. J. Nat. Cancer Inst. 96, 56–67 (2004).

    PubMed  CAS  Google Scholar 

  130. Plummer, R. et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 14, 7917–7923 (2008). This article describes the first clinical trial of a PARP inhibitor, in which rucaparib was evaluated in combination with temozolomide.

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Lesueur, P. et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget 8, 69105–69124 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Powell, C., Mikropoulos, C. & Kaye, S. B. Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat. Rev. 36, 566–575 (2010).

    PubMed  CAS  Google Scholar 

  133. Lu, Y., Liu, Y., Pang, Y., Pacak, K. & Yang, C. Double-barreled gun: combination of PARP inhibitor with conventional chemotherapy. Pharmacol. Ther. 188, 168–175 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Sachdev, E., Tabatabai, R., Roy, V., Rimel, B. J. & Mita, M. M. PARP inhibition in cancer: An update on clinical development. Target. Oncol. 14, 657–679 (2019).

    PubMed  Google Scholar 

  135. Lindahl, T., Satoh, M. S., Poirier, G. G. & Klungland, A. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci. 20, 405–411 (1995).

    PubMed  CAS  Google Scholar 

  136. Saleh-Gohari, N. et al. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol. Cell. Biol. 25, 7158–7169 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Venkitaraman, A. R. Functions of BRCA1 and BRCA2 in the biological response to DNA damage. J. Cell Sci. 114, 3591–3598 (2001).

    PubMed  CAS  Google Scholar 

  138. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009). This article describes the first clinical trial of a PARP inhibitor as a single agent (olaparib).

    PubMed  CAS  Google Scholar 

  139. De Lorenzo, S. B., Patel, A. G., Hurley, R. M. & Kaufmann, S. H. The elephant and the blind men: Making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front. Oncol. 3, 228 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    PubMed  CAS  Google Scholar 

  141. Mukhopadhyay, A. et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to PARP inhibitors. Clin. Cancer Res. 16, 2344–2351 (2010). This is the first demonstration that more than 50% of ovarian cancers are HRR defective.

    PubMed  CAS  Google Scholar 

  142. Konstantinopoulos, P. A. et al. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J. Clin. Oncol. 28, 3555–3561 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Jenner, Z. B., Sood, A. K. & Coleman, R. L. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for recurrent ovarian cancer therapy. Future Oncol. 12, 1439–1456 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Gulhan, D. C., Lee, J. J., Melloni, G. E. M., Cortés-Ciriano, I. & Park, P. J. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat. Genet. 51, 912–919 (2019).

    PubMed  CAS  Google Scholar 

  145. Ledermann, J., Harter, P., Gourley, C. et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 15, 852–861 (2019). This article describes the clinical trial leading to first approval of olaparib.

    Google Scholar 

  146. Drew, Y. et al. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br. J. Cancer 114, 723–730 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Kristeleit, R. et al. A phase I-II study of the oral PARP inhibitor rucaparib in patients with germline BRCA1/2-mutated ovarian carcinoma or other solid tumors. Clin. Cancer Res. 23, 4095–4106 (2017).

    PubMed  CAS  Google Scholar 

  148. Swisher, E. M. et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 18, 75–87 (2017).

    PubMed  CAS  Google Scholar 

  149. Oza, A. M. et al. Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2. Gynecol. Oncol. 147, 267–275 (2017).

    PubMed  CAS  Google Scholar 

  150. Coleman, R. L. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 1949–1961 (2017). The studies by Coleman et al., Drew et al. (2016), Kristeleit et al. (2017), Swischer et al. (2017) and Oza et al. (2017) together describe the clinical trials that contributed to the first approval of rucaparib.

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Mirza, M. R. et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375, 2154–2164 (2016). This study describes the clinical trial leading to the first approval of niraparib.

    PubMed  CAS  Google Scholar 

  152. Moore, K. N. et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 20, 636–648 (2019).

    PubMed  CAS  Google Scholar 

  153. Litton, J. K. et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med. 379, 753–763 (2018). This study describes the clinical trial leading to first approval of talazoparib.

    PubMed  CAS  Google Scholar 

  154. LaFargue, C. J., Dal Molin, G. Z., Sood, A. K. & Coleman, R. L. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 20, e15–e28 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Murthy, P. & Muggia, F. PARP inhibitors: clinical development, emerging differences and the current therapeutic issues. Cancer Drug Resist. 2, 665–679 (2019).

    Google Scholar 

  156. Adashek, J. J., Jain, R. K. & Zhang, J. Clinical development of PARP inhibitors in treating metastatic castrate-resistant prostate cancer. Cells 8, 860 (2019).

    PubMed Central  CAS  Google Scholar 

  157. Golan, T. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381, 317–327 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  158. Pujade-Lauraine, E. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 18, 1274–1284 (2017).

    PubMed  CAS  Google Scholar 

  159. Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).

    PubMed  CAS  Google Scholar 

  160. Robson, M. et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med. 377, 523–533 (2017).

    PubMed  CAS  Google Scholar 

  161. Ramalingam, S. S. et al. Randomized, placebo-controlled, phase II study of veliparib in combination with carboplatin and paclitaxel for advanced/metastatic non-small cell lung cancer. Clin. Cancer Res. 23, 1937–1944 (2017).

    PubMed  CAS  Google Scholar 

  162. Shen, Y., Aoyagi-Scharber, M. & Wang, B. Trapping poly(ADP-ribose) polymerase. J. Pharmacol. Exp. Ther. 353, 446–457 (2015).

    PubMed  CAS  Google Scholar 

  163. Kleinberg, L. et al. Phase I adult brain tumour consortium (ABTC) trial of ABT-888 (veliparib), temozolomide (TMZ) and radiotherapy (RT) for newly diagnosed glioblastoma multiforme (GBM) including pharmacokinetic (PK) data. J. Clin. Oncol. 31 (Suppl.15), 2065 (2013).

    Google Scholar 

  164. Mehta, M. P. et al. Veliparib in combination with whole brain radiation therapy in patients with brain metastases: results of a phase 1 study. J. Neurooncol. 122, 409–417 (2015).

    PubMed  CAS  Google Scholar 

  165. Su, J. M. et al. A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: a pediatric brain tumor consortium report. Neuro. Oncol. 16, 1661–1668 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Baxter, P. A. et al. A phase I/II clinical trial of veliparib (ABT-888) and radiation followed by maintenance therapy with veliparib and temozolomide in patients with newly diagnosed diffuse intrinsic pontine glioma (DIPG): a pediatric brain tumor consortium interim report of phase I study. J. Clin. Oncol. 33 (Suppl. 15), 10053 (2015).

    Google Scholar 

  167. Lickliter, J. D. et al. A phase I dose-escalation study of BGB-290, a novel PARP1/2 selective inhibitor in patients with advanced solid tumors. J. Clin. Oncol. 34 (Suppl. 15), e17049 (2016).

    Google Scholar 

  168. Friedlander, M. et al. Pamiparib in combination with tislelizumab in patients with advanced solid tumours: results from the dose-escalation stage of a multicentre, open-label, phase 1a/b trial. Lancet Oncol. 20, 1306–1315 (2019).

    PubMed  CAS  Google Scholar 

  169. Luo, J. et al. Fluzoparib increases radiation sensitivity of non-small cell lung cancer (NSCLC) cells without BRCA1/2 mutation, a novel PARP1 inhibitor undergoing clinical trials. J. Cancer Res. Clin. Oncol. 146, 721–737 (2020).

    PubMed  CAS  Google Scholar 

  170. Xu, J. M. et al. Phase I study of fluzoparib, a PARP1 inhibitor in combination with apatinib and paclitaxel in patients (pts) with advanced gastric and gastroesophageal junction (GEJ) adenocarcinoma. J. Clin. Oncol. 37 (Suppl. 15), 4060 (2019).

    Google Scholar 

  171. Gupta, S. K. et al. PARP inhibitors for sensitization of alkylation chemotherapy in glioblastoma: impact of blood-brain barrier and molecular heterogeneity. Front. Oncol. 8, 670 (2019).

    PubMed  PubMed Central  Google Scholar 

  172. Kizilbash, S. H. et al. Restricted delivery of talazoparib across the blood-brain barrier limits the sensitizing effects of PARP inhibition on temozolomide therapy in glioblastoma. Mol. Cancer Ther. 16, 2735–2746 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  173. Durmus, S. et al. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharm. Res. 32, 37–46 (2015).

    PubMed  CAS  Google Scholar 

  174. Ding, L. et al. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. Cell Rep. 25, 2972–2980.e5 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  175. Shen, J. et al. PARPi triggers the STING-dependent immune response and enhances the therapeutic efficacy of immune checkpoint blockade independent of BRCAness. Cancer Res. 79, 311–319 (2019). This study demonstrates the therapeutic potential of a PARP inhibitor in combination with immune checkpoint blockade.

    PubMed  CAS  Google Scholar 

  176. Stewart, R. A., Pilié, P. G. & Yap, T. A. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res. 78, 6717–6725 (2018).

    PubMed  CAS  Google Scholar 

  177. Lee, E. K. & Konstantinopoulos, P. A. Combined PARP and immune checkpoint inhibition in ovarian cancer. Trends Cancer 5, 524–528 (2019).

    PubMed  CAS  Google Scholar 

  178. Wilson, R. H. et al. A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br. J. Cancer 116, 884–892 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Cree, I. A. & Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 17, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  180. Sakai, W. et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 69, 6381–6386 (2009). This study identifies secondary mutations in BRCA2 that restore BRCA2 function.

    PubMed  PubMed Central  CAS  Google Scholar 

  181. Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29, 3008–3015 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  183. Hurley, R. M. et al. 53BP1 as a potential predictor of response in PARP inhibitor-treated homologous recombination-deficient ovarian cancer. Gynecol. Oncol. 153, 127–134 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  184. Xu, G. et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541–544 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  185. Patel, A. G., Sarkaria, J. N. & Kaufmann, S. H. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl Acad. Sci. USA 108, 3406–3411 (2011).

    PubMed  CAS  Google Scholar 

  186. Chaudhuri, R. A. et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535, 382–387 (2016).

    PubMed Central  CAS  Google Scholar 

  187. Gogola, E. et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell 33, 1078–1093 (2018).

    PubMed  CAS  Google Scholar 

  188. Ibrahim, Y. H. et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2, 1036–1047 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  189. Juvekar, A. et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2, 1048–1063 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  190. Mukhopadhyay, A., Drew, Y., Matheson, E. et al. Evaluating the potential of kinase inhibitors to suppress DNA repair and sensitise ovarian cancer cells to PARP inhibitors. Biochem. Pharmacol. 167, 125–132 (2019).

    PubMed  CAS  Google Scholar 

  191. Roos, W. P. & Krumm, A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res. 44, 10017–10030 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Peasland, A. et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br. J. Cancer 105, 372–381 (2011). This is the first article to show synergy between PARP inhibitors and ATR inhibitors.

    PubMed  PubMed Central  CAS  Google Scholar 

  193. Yazinski, S. A. et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 31, 318–332 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Pilié, P. G., Gay, C. M., Byers, L. A., O’Connor, M. J. & Yap, T. A. PARP inhibitors: extending benefit beyond BRCA-mutant cancers. Clin. Cancer Res. 25, 3759–3771 (2019).

    PubMed  Google Scholar 

  195. Haynes, B., Murai, J. & Lee, J. M. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. Cancer Treat. Rev. 71, 1–7 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  196. Johnson, N. et al. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat. Med. 17, 875–883 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  197. Pacher, P. & Szabo, C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol. 173, 2–13 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  198. Curtin, N. J. & Szabo, C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Asp. Med. 34, 1217–1256 (2013).

    CAS  Google Scholar 

  199. Szabó, C. & Dawson, V. L. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol. Sci. 19, 287–298 (1998).

    PubMed  Google Scholar 

  200. Virág, L. & Szabó, C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002).

    PubMed  Google Scholar 

  201. Jagtap, P. & Szabó, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov. 4, 421–440 (2005).

    PubMed  CAS  Google Scholar 

  202. Giansanti, V., Donà, F., Tillhon, M. & Scovassi, A. I. PARP inhibitors: new tools to protect from inflammation. Biochem. Pharmacol. 80, 1869–1877 (2010).

    PubMed  CAS  Google Scholar 

  203. Bai, P. & Virág, L. Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett. 586, 3771–3777 (2012).

    PubMed  CAS  Google Scholar 

  204. García, S. & Conde, C. The role of poly(ADP-ribose) polymerase-1 in rheumatoid arthritis. Mediators Inflamm. 2015, 837250 (2015).

    PubMed  PubMed Central  Google Scholar 

  205. Henning, R. J., Bourgeois, M. & Harbison, R. D. Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: mechanisms of action and role in cardiovascular disorders. Cardiovasc. Toxicol. 18, 493–506 (2018).

    PubMed  CAS  Google Scholar 

  206. Dawson, T. M. & Dawson, V. L. Nitric oxide signaling in neurodegeneration and cell death. Adv. Pharmacol. 82, 57–83 (2018).

    PubMed  CAS  Google Scholar 

  207. Halmosi, R. et al. PARP inhibition and postinfarction myocardial remodeling. Int. J. Cardiol. 217, S52–S59 (2016).

    PubMed  Google Scholar 

  208. Tapodi, A. et al. PARP inhibition induces Akt-mediated cytoprotective effects through the formation of a mitochondria-targeted phospho-ATM-NEMO-Akt-mTOR signalosome. Biochem. Pharmacol. 162, 98–108 (2019).

    PubMed  CAS  Google Scholar 

  209. Zingarelli, B., Salzman, A. L. & Szabo, C. Genetic disruption of poly (ADP ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia-reperfusion injury. Circ. Res. 83, 85–94 (1998).

    PubMed  CAS  Google Scholar 

  210. Liaudet, L. et al. Suppression of poly (ADP-ribose) polymerase activation by 3-aminobenzamide in a rat model of myocardial infarction: long-term morphological and functional consequences. Br. J. Pharmacol. 133, 1424–1430 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  211. Tóth-Zsámboki, E. et al. Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes. Mol. Med. 12, 221–228 (2006). This study provides the first evidence in humans that PARP is activated in myocardial infarction.

    PubMed  PubMed Central  Google Scholar 

  212. Khan, T. A. et al. Poly(ADP-ribose) polymerase inhibition improves postischemic myocardial function after cardioplegia-cardiopulmonary bypass. J. Am. Coll. Surg. 197, 270–277 (2003).

    PubMed  Google Scholar 

  213. Xiao, C. Y., Chen, M., Zsengellér, Z. & Szabo, C. Poly(ADP-ribose) polymerase contributes to the development of myocardial infarction in diabetic rats and regulates the nuclear translocation of apoptosis-inducing factor. J. Pharmacol. Exp. Ther. 310, 498–504 (2004).

    PubMed  CAS  Google Scholar 

  214. Szabó, G. et al. Poly(ADP-ribose) polymerase inhibition attenuates biventricular reperfusion injury after orthotopic heart transplantation. Eur. J. Cardiothorac. Surg. 27, 226–234 (2005).

    PubMed  Google Scholar 

  215. Roesner, J. P. et al. Therapeutic injection of PARP inhibitor INO-1001 preserves cardiac function in porcine myocardial ischemia and reperfusion without reducing infarct size. Shock 33, 507–512 (2010).

    PubMed  CAS  Google Scholar 

  216. Szabo, C., Biser, A., Benko, R., Böttinger, E. & Suszták, K. Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Lepr db/db mice. Diabetes 55, 3004–3012 (2006).

    PubMed  CAS  Google Scholar 

  217. Xiao, C. Y. et al. Poly(ADP-ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J. Pharmacol. Exp. Ther. 312, 891–898 (2005).

    PubMed  CAS  Google Scholar 

  218. Clark, R. S. et al. Local administration of the poly(ADP-ribose) polymerase inhibitor INO-1001 prevents NAD+ depletion and improves water maze performance after traumatic brain injury in mice. J. Neurotrauma 24, 1399–1405 (2007).

    PubMed  Google Scholar 

  219. d’Avila, J. C. et al. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. J. Neuroinflammation 9, 31 (2012).

    PubMed  PubMed Central  Google Scholar 

  220. Cardinale, A., Paldino, E., Giampà, C., Bernardi, G. & Fusco, F. R. PARP-1 inhibition is neuroprotective in the R6/2 mouse model of Huntington’s disease. PLoS ONE 10, e0134482 (2015).

    PubMed  PubMed Central  Google Scholar 

  221. Morrow, D. A. et al. A randomized, placebo-controlled trial to evaluate the tolerability, safety, pharmacokinetics, and pharmacodynamics of a potent inhibitor of poly(ADP-ribose) polymerase (INO-1001) in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of the TIMI 37 trial. J. Thromb. Thrombolysis 27, 359–364 (2009). This study is the first clinical trial of a PARP inhibitor in a non-oncological indication (myocardial infarction).

    PubMed  CAS  Google Scholar 

  222. Bedikian, A. Y. et al. A phase IB trial of intravenous INO-1001 plus oral temozolomide in subjects with unresectable stage-III or IV melanoma. Cancer Invest. 27, 756–763 (2009).

    PubMed  CAS  Google Scholar 

  223. Kim, Y. et al. Early treatment with poly(ADP-ribose) polymerase-1 inhibitor (JPI-289) reduces infarct volume and improves long-term behavior in an animal model of ischemic stroke. Mol. Neurobiol. 55, 7153–7163 (2018).

    PubMed  CAS  Google Scholar 

  224. Noh, M. Y. et al. Regulatory T cells increase after treatment with poly (ADP-ribose) polymerase-1 inhibitor in ischemic stroke patients. Int. Immunopharmacol. 60, 104–110 (2018).

    PubMed  CAS  Google Scholar 

  225. Bracken, C. et al. Inhibition of PARP1 attenuates rat renal ischemia reperfusion injury. J. Am. Soc. Nephrol. 29 (Suppl.), 882 Abstr. SA-PO561 (2018).

  226. Feng, F. Y., de Bono, J. S., Rubin, M. A. & Knudsen, K. E. Chromatin to clinic: the molecular rationale for PARP1 inhibitor function. Mol. Cell 58, 925–934 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  227. Berger, N. A. et al. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br. J. Pharmacol. 175, 192–222 (2018).

    PubMed  CAS  Google Scholar 

  228. Olsen, A. L. & Feany, M. B. PARP inhibitors and Parkinson’s disease. N. Engl. J. Med. 380, 492–494 (2019).

    PubMed  Google Scholar 

  229. Choi, S. K. et al. Poly(ADP-ribose) polymerase 1 inhibition improves coronary arteriole function in type 2 diabetes mellitus. Hypertension 59, 1060–1068 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  230. Mouchiroud, L. et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430–441 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  231. Pirinen, E. et al. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19, 1034–1041 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  232. Ghonim, M. A. et al. PARP inhibition by olaparib or gene knockout blocks asthma-like manifestation in mice by modulating CD4+ T cell function. J. Transl. Med. 13, 225 (2015).

    PubMed  PubMed Central  Google Scholar 

  233. Xu, J. C. et al. Cultured networks of excitatory projection neurons and inhibitory interneurons for studying human cortical neurotoxicity. Sci. Transl. Med. 8, 333ra48 (2016).

    PubMed  PubMed Central  Google Scholar 

  234. Rom, S. et al. PARP inhibition in leukocytes diminishes inflammation via effects on integrins/ cytoskeleton and protects the blood-brain barrier. J. Neuroinflammation 13, 254 (2016).

    PubMed  PubMed Central  Google Scholar 

  235. Fang, E. F. et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  236. Sahaboglu, A. et al. Olaparib significantly delays photoreceptor loss in a model for hereditary retinal degeneration. Sci. Rep. 6, 39537 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  237. Vidal-Gil, L., Sancho-Pelluz, J., Zrenner, E., Oltra, M. & Sahaboglu, A. Poly ADP ribosylation and extracellular vesicle activity in rod photoreceptor degeneration. Sci. Rep. 9, 3758 (2019).

    PubMed  PubMed Central  Google Scholar 

  238. Jang, K. H. et al. AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration. Cell Death Dis. 8, e2526 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  239. Trakkides, T. O. et al. Oxidative stress increases endogenous complement-dependent inflammatory and angiogenic responses in retinal pigment epithelial cells independently of exogenous complement sources. Antioxidants 8, 548 (2019).

    PubMed Central  CAS  Google Scholar 

  240. Gariani, K. et al. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J. Hepatol. 66, 132–141 (2017).

    PubMed  CAS  Google Scholar 

  241. Korkmaz-Icöz, S. et al. Olaparib protects cardiomyocytes against oxidative stress and improves graft contractility during the early phase after heart transplantation in rats. Br. J. Pharmacol. 175, 246–261 (2018).

    PubMed  Google Scholar 

  242. McGurk, L. et al. Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 6, 84 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  243. Krainz, T. et al. Synthesis and evaluation of a mitochondria-targeting poly(ADP-ribose) polymerase-1 inhibitor. ACS Chem. Biol. 13, 2868–2879 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  244. Tajuddin, N., Kim, H. Y. & Collins, M. A. PARP inhibition prevents ethanol-induced neuroinflammatory signaling and neurodegeneration in rat adult-age brain slice cultures. J. Pharmacol. Exp. Ther. 365, 117–126 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  245. Ahmad, A. et al. The PARP inhibitor olaparib exerts beneficial effects in mice subjected to cecal ligature and puncture and in cells subjected to oxidative stress without impairing DNA integrity: A potential opportunity for repurposing a clinically used oncological drug for the experimental therapy of sepsis. Pharmacol. Res. 145, 104263 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  246. Ahmad, A. et al. Effects of the poly(ADP-ribose) polymerase inhibitor olaparib in cerulein-induced pancreatitis. Shock 53, 653–665 (2020).

    PubMed  CAS  Google Scholar 

  247. Zhang, D. et al. DNA damage-induced PARP1 activation confers cardiomyocyte dysfunction through NAD+ depletion in experimental atrial fibrillation. Nat. Commun. 10, 1307 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  248. Nagy, L. et al. Olaparib induces browning of in vitro cultures of human primary white adipocytes. Biochem. Pharmacol. 167, 76–85 (2019).

    PubMed  CAS  Google Scholar 

  249. Lee, Y. et al. Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16, 1392–1400 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  250. Teng, F. et al. Neuroprotective effects of poly(ADP-ribose)polymerase inhibitor olaparib in transient cerebral ischemia. Neurochem. Res. 41, 1516–1526 (2016).

    PubMed  CAS  Google Scholar 

  251. Kapoor, K., Singla, E., Sahu, B. & Naura, A. S. PARP inhibitor, olaparib ameliorates acute lung and kidney injury upon intratracheal administration of LPS in mice. Mol. Cell Biochem. 400, 153–162 (2015).

    PubMed  CAS  Google Scholar 

  252. Ghonim, M. A. et al. PARP is activated in human asthma and its inhibition by olaparib blocks house dust mite-induced disease in mice. Clin. Sci. 129, 951–962 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  253. Mukhopadhyay, P. et al. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J. Hepatol. 66, 589–600 (2017).

    PubMed  CAS  Google Scholar 

  254. Ahmad, A., Olah, G., Herndon, D. N. & Szabo, C. The clinically used PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in a murine model of third-degree burn injury. Br. J. Pharmacol. 175, 232–245 (2018).

    PubMed  CAS  Google Scholar 

  255. McCullough, L. D., Zeng, Z., Blizzard, K. K., Debchoudhury, I. & Hurn, P. D. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J. Cereb. Blood Flow. Metab. 25, 502–512 (2005).

    PubMed  CAS  Google Scholar 

  256. Charriaut-Marlangue, C. et al. Sex differences in the effects of PARP inhibition on microglial phenotypes following neonatal stroke. Brain Behav. Immun. 73, 375–389 (2018).

    PubMed  CAS  Google Scholar 

  257. Mabley, J. G. et al. Gender differences in the endotoxin-induced inflammatory and vascular responses: potential role of poly(ADP-ribose) polymerase activation. J. Pharmacol. Exp. Ther. 315, 812–820 (2005). This is the first demonstration of sex differences in PARP activity, in an animal model of endotoxic shock.

    PubMed  CAS  Google Scholar 

  258. Zaremba, T. et al. Poly(ADP-ribose) polymerase-1 (PARP-1) pharmacogenetics, activity and expression analysis in cancer patients and healthy volunteers. Biochem. J. 436, 671–679 (2011).

    PubMed  CAS  Google Scholar 

  259. Di Girolamo, M. & Fabrizio, G. The ADP-ribosyl-transferases diphtheria toxin-like (ARTDs) family: an overview. Challenges 9, 24 (2018).

    Google Scholar 

  260. Qin, W. et al. Research progress on PARP14 as a drug target. Front. Pharmacol. 10, 1–12 (2019).

    Google Scholar 

  261. Obaji, E., Haikarainen, T. & Lehtiö, L. Structural basis for DNA break recognition by ARTD2/PARP2. Nucleic Acids Res. 46, 12154–12165 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  262. Hanzlikova, H., Gittens, W., Krejcikova, K., Zeng, Z. & Caldecott, K. W. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 45, 2546–2557 (2017).

    PubMed  CAS  Google Scholar 

  263. Thomas, C., Ji, Y., Lodhi, N., Kotova, E., Pinnola, A. D., Golovine, K., Makhov, P., Pechenkina, K., Kolenko, V. & Tulin, A. V. Non-NAD-like poly(ADP-ribose) polymerase-1 inhibitors effectively eliminate cancer in vivo. EBioMedicine 13, 90–98 (2016).

    PubMed  PubMed Central  Google Scholar 

  264. Wang, Y. Q. et al. An update on poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors: opportunities and challenges in cancer therapy. J. Med. Chem. 59, 9575–9598 (2016).

    PubMed  CAS  Google Scholar 

  265. Wahlberg, E. et al. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat. Biotechnol. 30, 283–288 (2012).

    PubMed  CAS  Google Scholar 

  266. Thorsell, A. G. et al. Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J. Med. Chem. 60, 1262–1271 (2017).

    PubMed  CAS  Google Scholar 

  267. Sherstyuk, Y. V. et al. Design, synthesis and molecular modeling study of conjugates of ADP and morpholino nucleosides as a novel class of inhibitors of PARP-1, PARP-2 and PARP-3. Int. J. Mol. Sci. 21, E214 (2019).

    PubMed  Google Scholar 

  268. Farrés, J. et al. PARP2 is required to maintain hematopoiesis following sublethal γ-irradiation in mice. Blood 122, 44–54 (2013).

    PubMed  PubMed Central  Google Scholar 

  269. Ali, S. O., Khan, F. A., Galindo-Campos, M. A. & Yélamos, J. Understanding specific functions of PARP-2: new lessons for cancer therapy. Am. J. Cancer Res. 6, 1842–1863 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  270. Popoff, I., Jijon, H., Monia, B., Tavernini, M., Ma, M., McKay, R. & Madsen, K. Antisense oligonucleotides to poly(ADP-ribose) polymerase-2 ameliorate colitis in interleukin-10-deficient mice. J. Pharmacol. Exp. Ther. 303, 1145–1154 (2002).

    PubMed  CAS  Google Scholar 

  271. Kamboj, A. et al. Poly(ADP-ribose) polymerase 2 contributes to neuroinflammation and neurological dysfunction in mouse experimental autoimmune encephalomyelitis. J. Neuroinflammation 10, 49 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  272. Lu, A. Z. et al. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation. Biochem. Pharmacol. 167, 97–106 (2019).

    PubMed  CAS  Google Scholar 

  273. Hsiao, S. J. & Smith, S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie 90, 83–92 (2008).

    PubMed  CAS  Google Scholar 

  274. Ye, J. Z. & de Lange, T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat. Genet. 36, 618–623 (2004).

    PubMed  CAS  Google Scholar 

  275. Ferri, M. et al. Targeting Wnt-driven cancers: discovery of novel tankyrase inhibitors. Eur. J. Med. Chem. 142, 506 (2017).

    CAS  Google Scholar 

  276. Lehtiö, L., Chi, N. W. & Krauss, S. Tankyrases as drug targets. FEBS J. 280, 3576–3593 (2013).

    PubMed  Google Scholar 

  277. Kamal, A., Riyaz, S., Srivastava, A. K. & Rahim, A. Tankyrase inhibitors as therapeutic targets for cancer. Curr. Top. Med. Chem. 14, 1967–1976 (2014).

    PubMed  CAS  Google Scholar 

  278. Riffell, J. L., Lord, C. J. & Ashworth, A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat. Rev. Drug Discov. 11, 923–936 (2012).

    PubMed  CAS  Google Scholar 

  279. Plummer, E. R. et al. First-in-human phase 1 study of the PARP/tankyrase inhibitor 2X-121 (E7449) as monotherapy in patients with advanced solid tumors and validation of a novel drug response predictor (DRP) mRNA biomarker. J. Clin. Oncol. 36, S2505 (2018).

    Google Scholar 

  280. Rodriguez-Vargas, J. M., Nguekeu-Zebaze, L. & Dantzer, F. PARP3 comes to light as a prime target in cancer therapy. Cell Cycle 18, 1295–1301 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  281. Beck, C., Robert, I., Reina-San-Martin, B., Schreiber, V. & Dantzer, F. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp. Cell Res. 329, 18–25 (2014).

    PubMed  CAS  Google Scholar 

  282. Lindgren, A. E. et al. PARP inhibitor with selectivity toward ADP-ribosyltransferase ARTD3/PARP3. ACS Chem. Biol. 8, 1698–1703 (2013).

    PubMed  CAS  Google Scholar 

  283. Sharif-Askari, B., Amrein, L., Aloyz, R. & Panasci, L. PARP3 inhibitors ME0328 and olaparib potentiate vinorelbine sensitization in breast cancer cell lines. Breast Cancer Res. Treat. 172, 23–32 (2018).

    PubMed  CAS  Google Scholar 

  284. Brunyanszki, A., Szczesny, B., Virág, L. & Szabo, C. Mitochondrial poly(ADP-ribose) polymerase: the Wizard of Oz at work. Free Radic. Biol. Med. 100, 257–270 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  285. Maciag, A. E. et al. Nitric oxide (NO) releasing poly ADP-ribose polymerase 1 (PARP-1) inhibitors targeted to glutathione S-transferase P1-overexpressing cancer cells. J. Med. Chem. 57, 2292–2302 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  286. Gallyas, F. Jr, Sumegi, B. & Szabo, C. Role of Akt activation in PARP inhibitor resistance in cancer. Cancers 12, 532 (2020).

    PubMed Central  CAS  Google Scholar 

  287. Bonfiglio, J. J. et al. Serine ADP-ribosylation depends on HPF1. Mol. Cell 65, 932–940 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  288. Gibbs-Seymour, I., Fontana, P., Rack, J. G. M. & Ahel, I. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell 62, 432–442 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  289. Bartlett, E. et al. Interplay of histone marks with serine ADP-ribosylation. Cell Rep. 24, 3488–3502 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  290. Han, W., Li, X. & Fu, X. The macro domain protein family: structure, functions, and their potential therapeutic implications. Mutat. Res. 727, 86–103 (2011).

    PubMed  CAS  Google Scholar 

  291. Barkauskaite, E., Jankevicius, G., Ladurner, A. G., Ahel, I. & Timinszky, G. The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J. 280, 3491–3507 (2013).

    PubMed  CAS  Google Scholar 

  292. Krietsch, J. et al. Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol. Aspects Med. 34, 1066–1087 (2013).

    PubMed  CAS  Google Scholar 

  293. Rack, J. G., Perina, D. & Ahel, I. Macrodomains: structure, function, evolution, and catalytic activities. Annu. Rev. Biochem. 85, 431–454 (2016).

    PubMed  CAS  Google Scholar 

  294. Jonsson, P. et al. Tumour lineage shapes BRCA-mediated phenotypes. Nature 571, 576–579 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  295. Curtin, N. J., Drew, Y. & Sharma-Saha, S. Why BRCA mutations are not tumour-agnostic biomarkers for PARP inhibitor therapy. Nat. Rev. Clin. Oncol. 16, 725–726 (2019).

    PubMed  CAS  Google Scholar 

  296. New REF Gentles, L. et al. Exploring the frequency of homologous recombination DNA repair dysfunction in multiple cancer types. Cancers 11, 354 (2019).

    Google Scholar 

  297. Patterson, M. J. et al. Assessing the function of homologous recombination DNA repair in malignant pleural effusion (MPE) samples. Br. J. Cancer 111, 94–100 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  298. Alves-Lopes, R. & Touyz, R. M. Poly(ADP-ribose) polymerase-1 (PARP-1) - a novel target in aortic aneurysm. Hypertension 72, 1087–1089 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  299. Sahaboglu, A. et al. Drug repurposing studies of PARP inhibitors as a new therapy for inherited retinal degeneration. Cell. Mol. Life Sci. 77, 2199–2216 (2020).

    PubMed  CAS  Google Scholar 

  300. Rao, P. D. et al. ‘PARP’ing fibrosis: repurposing poly (ADP-ribose) polymerase (PARP) inhibitors. Drug Discov. Today https://doi.org/10.1016/j.drudis.2020.04.019 (2020).

  301. Curtin, N. et al. Repositioning PARP inhibitors for SARS-CoV-2 infection (COVID-19); a new multi-pronged therapy for ARDS? Br. J. Pharmacol. https://doi.org/10.1111/bph.15137 (2020).

  302. Szabo, C., Martins, V. & Liaudet, L. Poly(ADP-ribose) polymerase inhibition in acute lung injury: a re-emerging concept. Am. J. Respir. Cell. Mol. Biol. https://doi.org/10.1165/rcmb.2020-0188TR (2020).

Download references

Acknowledgements

The research of N.J.C. in the field of PARP has been supported by grants from Cancer Research UK, Cancer Research UK Development Committee, the Association for International Cancer Research (06-0031), the Biotechnology and Biological Sciences Research Council, the Bone Cancer Research Trust, the JGW Patterson Foundation, Newcastle Healthcare Charity, the Northern Cancer Care & Research Society, the Academy of Medical Sciences (NIF\R1\181894) and the UK–India Education and Research Initiative/British Council (DST/INT/UK/P-134/2016). The research of C.S. in the field of PARP is supported by grants from the Swiss National Foundation (31003A_179434) and the Swiss State Secretariat for Education, Research and Innovation (SMG1927).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Nicola J. Curtin or Csaba Szabo.

Ethics declarations

Competing interests

C.S. has no conflicts of interest to declare. N.C. has served on the scientific advisory boards of various companies making PARP inhibitors (AbbVie, BioMarin, Eisai and Tesaro) and other DNA damage response inhibitors (Sierra). She has received royalty payments from the commercial development of Rubraca, which have been used to fund her group’s research and to establish the Curtin PARP (Passionate About Realizing your Potential) Fund at the Community Foundation (UK). Her PARP-related work has been supported by funding from Agouron Pharmaceuticals, Pfizer, Clovis, BioMarin and BiPar Sciences.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtin, N.J., Szabo, C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat Rev Drug Discov 19, 711–736 (2020). https://doi.org/10.1038/s41573-020-0076-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0076-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer