Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Braiding photonic topological zero modes

Abstract

A remarkable property of quantum mechanics in two-dimensional space is its ability to support ‘anyons’, particles that are neither fermions nor bosons. Theory predicts that these exotic excitations can exist as bound states confined near topological defects, such as Majorana zero modes trapped in vortices in topological superconductors. Intriguingly, in the simplest cases the non-trivial phase that arises when such defects are ‘braided’ around one another is not intrinsically quantum mechanical; instead, it can be viewed as a manifestation of the geometric (Pancharatnam–Berry) phase in wave mechanics, which makes possible the simulation of such phenomena in classical systems. Here, we report the experimental measurement of the geometric phase owing to such a braiding process. These measurements are obtained with an interferometer constructed from highly tunable two-dimensional arrays of photonic waveguides. Our results introduce photonic lattices as a versatile platform for the experimental study of topological defects and their braiding, and complement ongoing efforts in the study of solid-state systems and cold atomic gases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of waveguide array.
Fig. 2: Experimentally measured vortex mode.
Fig. 3: Interferometric measurement of Berry phase associated with braiding.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Leinaas, J. & Myrheim, J. On the theory of identical particles. Nuovo Ciment. B 37, 1–23 (1977).

    Article  ADS  Google Scholar 

  2. Wilczek, F. Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982).

    Article  ADS  Google Scholar 

  3. Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  4. Fröhlich, J. Statistics of fields, the Yang-Baxter equation, and the theory of knots and links. In Nonperturbative Quantum Field Theory (eds ‘t Hooft, G., et al.), NATO ASI Ser. B 185, 71–100 (Springer, 1988).

  5. Witten, E. Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  6. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  7. Freedman, M., Kitaev, A., Larsen, M. & Wang, Z. Topological quantum computation. Bull. Am. Math. Soc. 40, 31–38 (2002).

    Article  MathSciNet  Google Scholar 

  8. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  9. Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1984).

    Article  ADS  Google Scholar 

  10. Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article  ADS  Google Scholar 

  11. Todorić, M., Jukić, D., Radić, D., Soljačić, M. & Buljan, H. Quantum Hall effect with composites of magnetic flux tubes and charged particles. Phys. Rev. Lett. 120, 267201 (2018).

    Article  ADS  Google Scholar 

  12. Lunić, F. et al. Exact solutions of a model for synthetic anyons in a noninteracting system. Phys. Rev. B 101, 115139 (2020).

    Article  ADS  Google Scholar 

  13. Camino, F. E., Zhou, W. & Goldman, V. J. Realization of a Laughlin quasiparticle interferometer: observation of fractional statistics. Phys. Rev. B 72, 075342 (2005).

    Article  ADS  Google Scholar 

  14. An, S., et al., Braiding of Abelian and non-Abelian anyons in the fractional quantum Hall effect. Preprint at http://arXiv.org/abs/1112.3400 (2011).

  15. Willett, R. L., Nayak, C., Shtengel, K., Pfeiffer, L. N. & West, K. W. Magnetic-field-tuned Aharonov–Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2. Phys. Rev. Lett. 111, 186401 (2013).

  16. Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article  Google Scholar 

  17. Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016).

    Google Scholar 

  18. Karzig, T. et al. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017).

    Article  ADS  Google Scholar 

  19. Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article  ADS  Google Scholar 

  20. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics at the ν = 1/3 fractional quantum Hall state. Preprint at https://arxiv.org/abs/2006.14115 (2020).

  21. Pancharatnam, S. Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956).

    Article  MathSciNet  Google Scholar 

  22. Berry, M. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  23. Berry, M. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  24. Ivanov, D. A. Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

    Article  ADS  Google Scholar 

  25. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  26. Wang, Z., Chong, Y., Joannopoulos, J. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  27. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  28. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 907–912 (2013).

    Article  Google Scholar 

  29. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  30. Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  31. Davis, K. M., Miura, K., Sugimoto, N. & Hirao, K. Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996).

    Article  ADS  Google Scholar 

  32. Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B–At. Mol. Opt. 43, 163001 (2010).

    Article  ADS  Google Scholar 

  33. Iadecola, T., Schuster, T. & Chamon, C. Non-Abelian braiding of light. Phys. Rev. Lett. 117, 073901 (2016).

    Article  ADS  Google Scholar 

  34. Chiu, C. -K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

    Article  ADS  Google Scholar 

  35. Hou, C. -Y., Chamon, C. & Mudry, C. Electron fractionalization in two-dimensional graphenelike structures. Phys. Rev. Lett. 98, 186809 (2007).

    Article  ADS  Google Scholar 

  36. Jackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. Nucl. Phys. B 190, 681–691 (1981).

    Article  ADS  Google Scholar 

  37. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Article  ADS  Google Scholar 

  38. Semenoff, G. W. Chiral symmetry breaking in graphene. Phys. Scr. T146, 014016 (2012).

    Article  ADS  Google Scholar 

  39. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000).

    Article  ADS  Google Scholar 

  40. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  41. Izutsu, M., Nakai, Y. & Sueta, T. Operation mechanism of the single-mode optical-waveguide Y junction. Opt. Lett. 7, 136–138 (1982).

    Article  ADS  Google Scholar 

  42. Hardin, R. Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev. 15, 423 (1973).

    Google Scholar 

  43. Guglielmon, J., Huang, S., Chen, K. P. & Rechtsman, M. C. Photonic realization of a transition to a strongly driven Floquet topological phase. Phys. Rev. A 97, 031801 (2018).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.C.R. and J.N. acknowledge support from the US National Science Foundation (NSF, grant no. ECCS-1509546) and the Penn State Materials Research Science and Engineering Center, Center for Nanoscale Science (grant no. NSF DMR-1420620). M.C.R. acknowledges support from the US Office of Naval Research (grant no. N00014-18-1-2595) and the Packard Foundation (fellowship no. 2017-66821). J.N. acknowledges support by the Corning Incorporated Office of STEM Graduate Research. T.S. acknowledges support from the US NSF Graduate Research Fellowship Program (grant no. DGE 1752814). T.I. acknowledges support from the Laboratory for Physical Sciences, Microsoft and a Joint Quantum Institute postdoctoral fellowship, as well as Iowa State University start-up funds. K.P.C., S.H. and M.W. acknowledge support from the US NSF (grant nos. ECCS-1509199 and DMS-1620218). C.C. is supported by the US Department of Energy (grant no. DE-FG02-06ER46316).

Author information

Authors and Affiliations

Authors

Contributions

J.N. carried out the optical probing experiment and performed data analysis with guidance from M.C.R. J.N. and T.S. performed numerical simulations and designed the sample. T.S., T.I. and C.C. performed the theoretical analysis and helped to guide the experiment. S.H. and M.W. developed the laser fabrication process and fabricated and characterized the samples under the supervision of K.P.C. The manuscript was written by J.N., T.S., T.I, C.C. and M.C.R. M.C.R. supervised the project.

Corresponding author

Correspondence to Mikael C. Rechtsman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Video 1

Movies of the two waveguide lattices throughout the braiding stage, with each frame representing a constant-z slice of the waveguide array. The waveguides (filled circles) are displaced from their honeycomb positions (empty circles) at an angle equal to the phase of the Kekulé order parameter Δr(z) (arrows, drawn parallel to the displacements and colored according to their orientation). The order parameter in each lattice contains a vortex of charge –1 (central red square) near the lattice center. The overall offset α of the order parameter’s phase in each lattice is varied as a function of z and can be interpreted as the angle between the central anti-vortex and a fictitious vortex ‘at infinity’ (outer red square) that resides outside the waveguide array. In this first experiment, αα + π in both lattices, corresponding to braiding a vortex at infinity counterclockwise about each lattice.

Supplementary Video 2

In this second experiment, αα + π in the lattice on the left, and ααπ in the lattice on the right, corresponding to braiding a vortex at infinity counterclockwise about the left lattice but clockwise about the right lattice. The final configurations of the two lattices differ by a phase 2π and are identical.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, J., Schuster, T., Iadecola, T. et al. Braiding photonic topological zero modes. Nat. Phys. 16, 989–993 (2020). https://doi.org/10.1038/s41567-020-1007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-1007-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing