Skip to main content
Log in

Altered gray matter structural covariance networks at both acute and chronic stages of mild traumatic brain injury

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Cognitive and emotional impairments observed in mild traumatic brain injury (mTBI) patients may reflect variances of brain connectivity within specific networks. Although previous studies found altered functional connectivity (FC) in mTBI patients, the alterations of brain structural properties remain unclear. In the present study, we analyzed structural covariance (SC) for the acute stages of mTBI (amTBI) patients, the chronic stages of mTBI (cmTBI) patients, and healthy controls. We first extracted the mean gray matter volume (GMV) of seed regions that are located in the default-mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), and the visual network (VN). Then we determined and compared the SC for each seed region among the amTBI, the cmTBI and the healthy controls. Compared with healthy controls, the amTBI patients showed lower SC for the ECN, and the cmTBI patients showed higher SC for the both DMN and SN but lower SC for the SMN. The results revealed disrupted ECN in the amTBI patients and disrupted DMN, SN and SMN in the cmTBI patients. These alterations suggest that early disruptions in SC between bilateral insula and the bilateral prefrontal cortices may appear in amTBI and persist into cmTBI, which might be potentially related to the cognitive and emotional impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

amTBI:

Acute stage of mild traumatic brain injury

BAI:

Beck Anxiety Inventory

BDI:

Beck Depression Inventory

cmTBI:

Chronic stage of mild traumatic brain injury

CSF:

Cerebrospinal fluid

DAN:

Dorsal attention network

dlPFC:

Dorsolateral prefrontal cortex

DMN:

Default-mode network

ECN:

Executive control network

FC:

Functional connectivity

FI:

Fronto-insular cortex

GCS:

Glasgow Coma Scale

GM:

Gray matter

GMV:

Gray matter volume

HC:

Healthy controls

ICNs:

Intrinsic connectivity networks

M1:

Primary motor cortex

MFG:

Middle frontal gyrus

mGMV:

Mean gray matter volume

MoCA:

Montreal Cognitive Assessment

MOG:

Middle occipital gyrus

mPFC:

Medial prefrontal cortex

mTBI:

Mild traumatic brain injury

OFC:

Orbitofrontal cortex

ORBinf:

Orbital part of inferior frontal gyrus

PFC:

Prefrontal cortex

PoCG:

Postcentral gyrus

PreCG:

Precentral gyrus

SC:

Structural covariance

SCNs:

Structural covariance networks

SFGmed:

Left medial superior frontal cortex

SMA:

Supplementary motor area.

SMN:

Sensorimotor network;

SN:

Salience network

STG:

Superior temporal gyrus

TBI:

Traumatic brain injury

TPN:

Task positive network

V1:

Primary visual cortex

VBM:

Voxel-based morphometry

VN:

Visual network

WM:

White matter

References

  • Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013). Imaging structural co-variance between human brain regions. Nature Reviews. Neuroscience, 14(5), 322–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X. J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16(12), 584–592.

    PubMed  PubMed Central  Google Scholar 

  • Aoki, Y., & Inokuchi, R. (2016). A voxel-based meta-analysis of diffusion tensor imaging in mild traumatic brain injury. Neuroscience and Biobehavioral Reviews, 66, 119–126.

    PubMed  Google Scholar 

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.

    PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry--the methods. Neuroimage, 11(6 Pt 1), 805–821.

    CAS  PubMed  Google Scholar 

  • Bailie, J. M., Kennedy, J. E., French, L. M., Marshall, K., Prokhorenko, O., Asmussen, S., Reid, M. W., Qashu, F., Brickell, T. A., & Lange, R. T. (2016). Profile analysis of the neurobehavioral and psychiatric symptoms following combat-related mild traumatic brain injury: Identification of subtypes. The Journal of Head Trauma Rehabilitation, 31(1), 2–12.

    PubMed  Google Scholar 

  • Barnes, D. E., Byers, A. L., Gardner, R. C., Seal, K. H., Boscardin, W. J., & Yaffe, K. (2018). Association of Mild Traumatic Brain Injury with and without Loss of consciousness with dementia in US military veterans. JAMA Neurology, 75(9), 1055–1061.

    PubMed  PubMed Central  Google Scholar 

  • Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.

    CAS  PubMed  Google Scholar 

  • Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893–897.

    CAS  PubMed  Google Scholar 

  • Belanger, H. G., Spiegel, E., & Vanderploeg, R. D. (2010). Neuropsychological performance following a history of multiple self-reported concussions: A meta-analysis. Journal of the International Neuropsychological Society, 16(2), 262–267.

    PubMed  Google Scholar 

  • Bernier, R. A., Roy, A., Venkatesan, U. M., Grossner, E. C., Brenner, E. K., & Hillary, F. G. (2017). Dedifferentiation does not account for Hyperconnectivity after traumatic brain injury. Frontiers in Neurology, 8, 297.

    PubMed  PubMed Central  Google Scholar 

  • Bharath, R. D., Munivenkatappa, A., Gohel, S., Panda, R., Saini, J., Rajeswaran, J., et al. (2015). Recovery of resting brain connectivity ensuing mild traumatic brain injury. Frontiers in Human Neuroscience, 9, 513–526.

    PubMed  PubMed Central  Google Scholar 

  • Boly, M., Phillips, C., Tshibanda, L., Vanhaudenhuyse, A., Schabus, M., Dang-Vu, T. T., Moonen, G., Hustinx, R., Maquet, P., & Laureys, S. (2008). Intrinsic brain activity in altered states of consciousness: How conscious is the default mode of brain function? Annals of the New York Academy of Sciences, 1129, 119–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boly, M., Tshibanda, L., Vanhaudenhuyse, A., Noirhomme, Q., Schnakers, C., Ledoux, D., Boveroux, P., Garweg, C., Lambermont, B., Phillips, C., Luxen, A., Moonen, G., Bassetti, C., Maquet, P., & Laureys, S. (2009). Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Human Brain Mapping, 30(8), 2393–2400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., et al. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31(38), 13442–13451.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cauda, F., Nani, A., Costa, T., Palermo, S., Tatu, K., Manuello, J., Duca, S., Fox, P. T., & Keller, R. (2018a). The morphometric co-atrophy networking of schizophrenia, autistic and obsessive spectrum disorders. Human Brain Mapping, 39(5), 1898–1928.

    PubMed  PubMed Central  Google Scholar 

  • Cauda, F., Nani, A., Manuello, J., Premi, E., Palermo, S., Tatu, K., Duca, S., Fox, P. T., & Costa, T. (2018b). Brain structural alterations are distributed following functional, anatomic and genetic connectivity. Brain, 141(11), 3211–3232.

    PubMed  PubMed Central  Google Scholar 

  • Chang, C. C., Chang, Y. T., Huang, C. W., Tsai, S. J., Hsu, S. W., Huang, S. H., Lee, C. C., Chang, W. N., Lui, C. C., & Lien, C. Y. (2018). Associations of Bcl-2 rs956572 genotype groups in the structural covariance network in early-stage Alzheimer's disease. Alzheimer’s Research & Therapy, 10(1), 17–29.

    Google Scholar 

  • Chen, Z., Deng, W., Gong, Q., Huang, C., Jiang, L., Li, M., He, Z., Wang, Q., Ma, X., Wang, Y., Chua, S. E., McAlonan, G. M., Sham, P. C., Collier, D. A., McGuire, P., & Li, T. (2014). Extensive brain structural network abnormality in first-episode treatment-naive patients with schizophrenia: Morphometrical and covariation study. Psychological Medicine, 44(12), 2489–2501.

    CAS  PubMed  Google Scholar 

  • Chiong, W., Wilson, S. M., D’Esposito, M., Kayser, A. S., Grossman, S. N., Poorzand, P., et al. (2013). The salience network causally influences default mode network activity during moral reasoning. Brain, 136(Pt 6), 1929–1941.

    PubMed  PubMed Central  Google Scholar 

  • Chou, K. H., Lin, W. C., Lee, P. L., Tsai, N. W., Huang, Y. C., Chen, H. L., Cheng, K. Y., Chen, P. C., Wang, H. C., Lin, T. K., Li, S. H., Lin, W. M., Lu, C. H., & Lin, C. P. (2015). Structural covariance networks of striatum subdivision in patients with Parkinson's disease. Human Brain Mapping, 36(4), 1567–1584.

    PubMed  Google Scholar 

  • Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8719–8724.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Acqua, P., Johannes, S., Mica, L., Simmen, H. P., Glaab, R., Fandino, J., Schwendinger, M., Meier, C., Ulbrich, E. J., Müller, A., Jäncke, L., & Hänggi, J. (2017). Prefrontal cortical thickening after mild traumatic brain injury: A one-year magnetic resonance imaging study. Journal of Neurotrauma, 34(23), 3270–3279.

    PubMed  Google Scholar 

  • Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Simoni, S., Jenkins, P. O., Bourke, N. J., Fleminger, J. J., Hellyer, P. J., Jolly, A. E., et al. (2018). Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury. Brain, 141(1), 148–164.

    PubMed  Google Scholar 

  • Di Perri, C., Bastianello, S., Bartsch, A. J., Pistarini, C., Maggioni, G., Magrassi, L., et al. (2013). Limbic hyperconnectivity in the vegetative state. Neurology, 81(16), 1417–1424.

    PubMed  Google Scholar 

  • Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., et al. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drag, L. L., Spencer, R. J., Walker, S. J., Pangilinan, P. H., & Bieliauskas, L. A. (2012). The contributions of self-reported injury characteristics and psychiatric symptoms to cognitive functioning in OEF/OIF veterans with mild traumatic brain injury. Journal of the International Neuropsychological Society, 18(3), 576–584.

    PubMed  Google Scholar 

  • Duning, T., Kloska, S., Steinstrater, O., Kugel, H., Heindel, W., & Knecht, S. (2005). Dehydration confounds the assessment of brain atrophy. Neurology, 64(3), 548–550.

    CAS  PubMed  Google Scholar 

  • Eierud, C., Craddock, R. C., Fletcher, S., Aulakh, M., King-Casas, B., Kuehl, D., & LaConte, S. M. (2014). Neuroimaging after mild traumatic brain injury: Review and meta-analysis. Neuroimage Clin, 4, 283–294.

    PubMed  PubMed Central  Google Scholar 

  • Evans, A. C. (2013). Networks of anatomical covariance. Neuroimage, 80, 489–504.

    CAS  PubMed  Google Scholar 

  • Ferrer, I., Blanco, R., Carulla, M., Condom, M., Alcántara, S., Olivé, M., & Planas, A. (1995). Transforming growth factor-alpha immunoreactivity in the developing and adult brain. Neuroscience, 66(1), 189–199.

    CAS  PubMed  Google Scholar 

  • Fischer, B. L., Parsons, M., Durgerian, S., Reece, C., Mourany, L., Lowe, M. J., Beall, E. B., Koenig, K. A., Jones, S. E., Newsome, M. R., Scheibel, R. S., Wilde, E. A., Troyanskaya, M., Merkley, T. L., Walker, M., Levin, H. S., & Rao, S. M. (2014). Neural activation during response inhibition differentiates blast from mechanical causes of mild to moderate traumatic brain injury. Journal of Neurotrauma, 31(2), 169–179.

    PubMed  PubMed Central  Google Scholar 

  • Fortenbaugh, F. C., Rothlein, D., McGlinchey, R., DeGutis, J., & Esterman, M. (2018). Tracking behavioral and neural fluctuations during sustained attention: A robust replication and extension. Neuroimage, 171, 148–164.

    PubMed  Google Scholar 

  • Geng, X., Li, G., Lu, Z., Gao, W., Wang, L., Shen, D., Zhu, H., & Gilmore, J. H. (2017). Structural and maturational covariance in early childhood brain development. Cerebral Cortex, 27(3), 1795–1807.

    PubMed  Google Scholar 

  • Govindarajan, K. A., Narayana, P. A., Hasan, K. M., Wilde, E. A., Levin, H. S., Hunter, J. V., Miller, E. R., Patel, V. K. S., Robertson, C. S., & McCarthy, J. J. (2016). Cortical thickness in mild traumatic brain injury. Journal of Neurotrauma, 33(20), 1809–1817.

    PubMed  PubMed Central  Google Scholar 

  • Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., Onate, J. A., & Kelly, J. P. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA concussion study. Jama, 290(19), 2549–2555.

    CAS  PubMed  Google Scholar 

  • Hamblin, M. R. (2018). Photobiomodulation for traumatic brain injury and stroke. Journal of Neuroscience Research, 96(4), 731–743.

    CAS  PubMed  Google Scholar 

  • Heinze, K., Reniers, R. L., Nelson, B., Yung, A. R., Lin, A., Harrison, B. J., et al. (2015). Discrete alterations of brain network structural covariance in individuals at ultra-high risk for psychosis. Biological Psychiatry, 77(11), 989–996.

    PubMed  Google Scholar 

  • Hillary, F. G., Slocomb, J., Hills, E. C., Fitzpatrick, N. M., Medaglia, J. D., Wang, J., Good, D. C., & Wylie, G. R. (2011). Changes in resting connectivity during recovery from severe traumatic brain injury. International Journal of Psychophysiology, 82(1), 115–123.

    CAS  PubMed  Google Scholar 

  • Jennett, B. (1998). Epidemiology of head injury. Archives of Disease in Childhood, 78(5), 403–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., & Slobounov, S. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. Neuroimage, 59(1), 511–518.

    PubMed  Google Scholar 

  • Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Taylor Tavares, J. V., Carpenter, T. A., Pickard, J. D., Sahakian, B. J., & Stamatakis, E. A. (2010). Altered functional connectivity in the motor network after traumatic brain injury. Neurology, 75(2), 168–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527–537.

    PubMed  Google Scholar 

  • Kennedy, J. E., Cullen, M. A., Amador, R. R., Huey, J. C., & Leal, F. O. (2010). Symptoms in military service members after blast mTBI with and without associated injuries. NeuroRehabilitation, 26(3), 191–197.

    PubMed  Google Scholar 

  • Lee, P. L., Chou, K. H., Lu, C. H., Chen, H. L., Tsai, N. W., Hsu, A. L., Chen, M. H., Lin, W. C., & Lin, C. P. (2018). Extraction of large-scale structural covariance networks from grey matter volume for Parkinson's disease classification. European Radiology, 28(8), 3296–3305.

    PubMed  Google Scholar 

  • Li, F., Lu, L., Chen, H., Wang, P., Zhang, H., Chen, Y. C., et al. (2019). Neuroanatomical and functional alterations of insula in mild traumatic brain injury patients at the acute stage. Brain Imaging and Behavior, on press.

  • Lindemer, E. R., Salat, D. H., Leritz, E. C., McGlinchey, R. E., & Milberg, W. P. (2013). Reduced cortical thickness with increased lifetime burden of PTSD in OEF/OIF veterans and the impact of comorbid TBI. Neuroimage Clin, 2, 601–611.

    PubMed  PubMed Central  Google Scholar 

  • Manoliu, A., Meng, C., Brandl, F., Doll, A., Tahmasian, M., Scherr, M., et al. (2013). Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Frontiers in Human Neuroscience, 7, 930–947.

    PubMed  Google Scholar 

  • Matsuo, K., Kopecek, M., Nicoletti, M. A., Hatch, J. P., Watanabe, Y., Nery, F. G., Zunta-Soares, G., & Soares, J. C. (2012). New structural brain imaging endophenotype in bipolar disorder. Molecular Psychiatry, 17(4), 412–420.

    CAS  PubMed  Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835.

    PubMed  PubMed Central  Google Scholar 

  • Mayer, A. R., Hanlon, F. M., Dodd, A. B., Ling, J. M., Klimaj, S. D., & Meier, T. B. (2015). A functional magnetic resonance imaging study of cognitive control and neurosensory deficits in mild traumatic brain injury. Human Brain Mapping, 36(11), 4394–4406.

    PubMed  PubMed Central  Google Scholar 

  • Mechelli, A., Friston, K. J., Frackowiak, R. S., & Price, C. J. (2005). Structural covariance in the human cortex. The Journal of Neuroscience, 25(36), 8303–8310.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messe, A., Caplain, S., Paradot, G., Garrigue, D., Mineo, J. F., Soto Ares, G., et al. (2011). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Human Brain Mapping, 32(6), 999–1011.

    PubMed  Google Scholar 

  • Montembeault, M., Joubert, S., Doyon, J., Carrier, J., Gagnon, J. F., Monchi, O., Lungu, O., Belleville, S., & Brambati, S. M. (2012). The impact of aging on gray matter structural covariance networks. Neuroimage, 63(2), 754–759.

    PubMed  Google Scholar 

  • Montembeault, M., Rouleau, I., Provost, J. S., & Brambati, S. M. (2016). Altered gray matter structural covariance networks in early stages of Alzheimer's disease. Cerebral Cortex, 26(6), 2650–2662.

    PubMed  Google Scholar 

  • Nakamura, T., Hillary, F. G., & Biswal, B. B. (2009). Resting network plasticity following brain injury. PLoS One, 4(12), e8220.

    PubMed  PubMed Central  Google Scholar 

  • Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005). The Montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.

    PubMed  Google Scholar 

  • Nelson, C., St Cyr, K., Weiser, M., Gifford, S., Gallimore, J., & Morningstar, A. (2011). Knowledge gained from the brief traumatic brain injury screen--implications for treating Canadian military personnel. Military Medicine, 176(2), 156–160.

    PubMed  Google Scholar 

  • Newsome, M. R., Durgerian, S., Mourany, L., Scheibel, R. S., Lowe, M. J., Beall, E. B., Koenig, K. A., Parsons, M., Troyanskaya, M., Reece, C., Wilde, E., Fischer, B. L., Jones, S. E., Agarwal, R., Levin, H. S., & Rao, S. M. (2015). Disruption of caudate working memory activation in chronic blast-related traumatic brain injury. Neuroimage Clin, 8, 543–553.

    PubMed  PubMed Central  Google Scholar 

  • O’Neil, M, E., Carlson, K., Storzbach, D., Brenner, L., Freeman, M., Quiñones, A., et al. (2013). VA evidence-based synthesis program reports. In Complications of Mild Traumatic Brain Injury in Veterans and Military Personnel: A Systematic Review (pp. 1-162). Washington (DC): Department of Veterans Affairs (US).

  • Pagani, M., Bifone, A., & Gozzi, A. (2016). Structural covariance networks in the mouse brain. Neuroimage, 129, 55–63.

    PubMed  Google Scholar 

  • Qi, T., Schaadt, G., Cafiero, R., Brauer, J., Skeide, M. A., & Friederici, A. D. (2019). The emergence of long-range language network structural covariance and language abilities. Neuroimage, 191, 36–48.

    PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rigon, A., Duff, M. C., McAuley, E., Kramer, A. F., & Voss, M. W. (2016). Is traumatic brain injury associated with reduced inter-hemispheric functional connectivity? A study of large-scale resting state networks following traumatic brain injury. Journal of Neurotrauma, 33(11), 977–989.

    PubMed  PubMed Central  Google Scholar 

  • Risen, S. R., Barber, A. D., Mostofsky, S. H., & Suskauer, S. J. (2015). Altered functional connectivity in children with mild to moderate TBI relates to motor control. Journal of Pediatric Rehabilitation Medicine, 8(4), 309–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santhanam, P., Wilson, S. H., Oakes, T. R., & Weaver, L. K. (2019). Effects of mild traumatic brain injury and post-traumatic stress disorder on resting-state default mode network connectivity. Brain Research, 1711, 77–82.

    CAS  PubMed  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De Boissezon, X., et al. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(Pt 8), 2233–2247.

    PubMed  Google Scholar 

  • Sharp, D. J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews. Neurology, 10(3), 156–166.

    PubMed  Google Scholar 

  • Shumskaya, E., van Gerven, M. A., Norris, D. G., Vos, P. E., & Kessels, R. P. (2017). Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury. Experimental Brain Research, 235(3), 799–807.

    PubMed  Google Scholar 

  • Smith, L. G. F., Milliron, E., Ho, M. L., Hu, H. H., Rusin, J., Leonard, J., & Sribnick, E. A. (2019). Advanced neuroimaging in traumatic brain injury: An overview. Neurosurgical Focus, 47(6), E17.

    PubMed  Google Scholar 

  • Sours, C., Zhuo, J., Janowich, J., Aarabi, B., Shanmuganathan, K., & Gullapalli, R. P. (2013). Default mode network interference in mild traumatic brain injury - a pilot resting state study. Brain Research, 1537, 201–215.

    CAS  PubMed  Google Scholar 

  • Sours, C., Zhuo, J., Roys, S., Shanmuganathan, K., & Gullapalli, R. P. (2015). Disruptions in resting state functional connectivity and cerebral blood flow in mild traumatic brain injury patients. PLoS One, 10(8), e0134019.

    PubMed  PubMed Central  Google Scholar 

  • Spielberg, J. M., McGlinchey, R. E., Milberg, W. P., & Salat, D. H. (2015). Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans. Biological Psychiatry, 78(3), 210–216.

    PubMed  Google Scholar 

  • Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sripada, R. K., King, A. P., Welsh, R. C., Garfinkel, S. N., Wang, X., Sripada, C. S., & Liberzon, I. (2012). Neural dysregulation in posttraumatic stress disorder: Evidence for disrupted equilibrium between salience and default mode brain networks. Psychosomatic Medicine, 74(9), 904–911.

    PubMed  PubMed Central  Google Scholar 

  • Stephens, J. A., Salorio, C. E., Gomes, J. P., Nebel, M. B., Mostofsky, S. H., & Suskauer, S. J. (2017). Response inhibition deficits and altered motor network connectivity in the chronic phase of pediatric traumatic brain injury. Journal of Neurotrauma, 34(22), 3117–3123.

    PubMed  PubMed Central  Google Scholar 

  • Tate, D. F., York, G. E., Reid, M. W., Cooper, D. B., Jones, L., Robin, D. A., Kennedy, J. E., & Lewis, J. (2014). Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings. Brain Imaging and Behavior, 8(1), 102–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 81–84.

    CAS  PubMed  Google Scholar 

  • van der Horn, H. J., Liemburg, E. J., Aleman, A., Spikman, J. M., & van der Naalt, J. (2016a). Brain networks subserving emotion regulation and adaptation after mild traumatic brain injury. Journal of Neurotrauma, 33(1), 1–9.

    PubMed  Google Scholar 

  • van der Horn, H. J., Liemburg, E. J., Scheenen, M. E., de Koning, M. E., Marsman, J. B., Spikman, J. M., et al. (2016b). Brain network dysregulation, emotion, and complaints after mild traumatic brain injury. Human Brain Mapping, 37(4), 1645–1654.

    PubMed  PubMed Central  Google Scholar 

  • van der Horn, H. J., Scheenen, M. E., de Koning, M. E., Liemburg, E. J., Spikman, J. M., & van der Naalt, J. (2017). The default mode network as a biomarker of persistent complaints after mild traumatic brain injury: A longitudinal functional magnetic resonance imaging study. Journal of Neurotrauma, 34(23), 3262–3269.

    PubMed  Google Scholar 

  • Ware, A. L., Biekman, B., Hachey, R., MacLeod, M., Bird, W., Pathak, S., Clarke, E., Borrasso, A., Puccio, A. M., Glavin, K., Pomiecko, K., Moretti, P., Beers, S. R., Levin, H. S., Schneider, W., Okonkwo, D. O., & Wilde, E. A. (2019). A preliminary high-definition Fiber tracking study of the executive control network in blast-induced traumatic brain injury. Journal of Neurotrauma, 36(5), 686–701.

    PubMed  Google Scholar 

  • Wilde, E. A., Merkley, T. L., Bigler, E. D., Max, J. E., Schmidt, A. T., Ayoub, K. W., McCauley, S. R., Hunter, J. V., Hanten, G., Li, X., Chu, Z. D., & Levin, H. S. (2012). Longitudinal changes in cortical thickness in children after traumatic brain injury and their relation to behavioral regulation and emotional control. International Journal of Developmental Neuroscience, 30(3), 267–276.

    PubMed  PubMed Central  Google Scholar 

  • Xu, B., Sandrini, M., Levy, S., Volochayev, R., Awosika, O., Butman, J. A., Pham, D. L., & Cohen, L. G. (2017). Lasting deficit in inhibitory control with mild traumatic brain injury. Scientific Reports, 7(1), 14902–14912.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, R., Wang, F., Zhao, G., Xia, W., Peng, D., Mao, R., Xu, J., Wang, Z., Hong, W., Zhang, C., Wang, Y., Su, Y., Huang, J., Yang, T., Wang, J., Chen, J., Palaniyappan, L., & Fang, Y. (2018). Effects of tumor necrosis factor-alpha polymorphism on the brain structural changes of the patients with major depressive disorder. Translational Psychiatry, 8(1), 217–226.

    PubMed  PubMed Central  Google Scholar 

  • Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18191–18196.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate Drs. Rhoda E. and Edmund F. Perozzi for editing the manuscript.

Funding

This study was funded by the National Natural Science Foundation of China (Grant numbers: 81871338, 81371535, and 81271548), the National Key R&D Program of China (Grant number: 2018YFC1705006), and the Key Specialty Disease Specialist Project of Hangzhou City (Grant number: 20150733Q19). The funding organizations played no further role in study design, data collection, analysis and interpretation, or paper writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Ding or Ruiwang Huang.

Ethics declarations

Conflict of interest

All of the authors declare that they have no conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study protocol was approved by the Institutional Review Board of the Affiliated Hospital of Hangzhou Normal University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The amTBI patients showed lower SC within the ECN than the controls.

• The cmTBI patients showed higher SC within both the DMN and SN, but lower SC within the SMN, than the controls.

• Altered SC for the DMN, ECN and SN was related to cognitive and emotional impairments in mTBI patients.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Li, J., Chen, L. et al. Altered gray matter structural covariance networks at both acute and chronic stages of mild traumatic brain injury. Brain Imaging and Behavior 15, 1840–1854 (2021). https://doi.org/10.1007/s11682-020-00378-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00378-4

Keywords

Navigation