Skip to main content
Log in

Effective Thermal Conductivity of Composites with Contact Thermal Resistance between the Inclusions and the Matrix

  • Published:
Russian Engineering Research Aims and scope

Abstract

A method is proposed for predicting the effective thermal conductivity of a matrix composite with several types of spherical inclusions, in the case of contact thermal resistance at the matrix–inclusion boundary. The method is based on generalized effective-field approximation for a inhomogeneous medium containing inclusions that have an outer shell. As an example, calculations are presented for a matrix tribocomposite with two types of inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kolesnikov, V.I., Teplofizicheskie protsessy v metallopolimernykh tribosistemakh (Thermophysical Processes in Metalpolymeric Tribosystems), Moscow: Nauka, 2003.

  2. Every, A.G., Tzou, Y., Hasselman, D.P.H., and Raj, R., The effect of particle size on the thermal conductivity of ZnS/diamond composites, Acta Metall. Mater., 1992, vol. 40, no. 1, p. 123.

    Article  Google Scholar 

  3. Devpura, A., Phelan, P.E., and Prasher, R.S., Size effects on the thermal conductivity of polymers laden with highly conductive filler particles, Microscale Thermophys. Eng., 2001, vol. 5, no. 3, pp. 177–189. https://doi.org/10.1080/108939501753222869

    Article  Google Scholar 

  4. Kidalov, S.V. and Shakhov, F.M., Thermal conductivity of diamond composites, Materials, 2009, vol. 2, pp. 2467–2495. https://doi.org/10.3390/ma2042467

    Article  Google Scholar 

  5. Pietrak, K. and Wisniewski, T.S., Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials, J. Power Technol., 2014, vol. 94, no. 4, pp. 270–285.

    Google Scholar 

  6. Pietrak, K., Kubis, M., Langowski, M., et al., Effect of particle shape and imperfect filler-matrix interface on effective thermal conductivity of epoxy-aluminum composite, Compos. Theory Pract., 2017, no. 4, pp. 183–188. https://doi.org/10.5281/zenodo.1188082

  7. Kapitsa, P.L., The Study of Heat Transfer in Helium II, J. Phys. USSR, 1941, vol. 4, p. 181.

    Google Scholar 

  8. Wait, J.R., Geo-Electromagnetism, New-York: Academic, 1982.

    Google Scholar 

  9. Maxwell-Garnett, J.C., Colors in metal glasses and in metallic films, Philos. Trans. R. Soc., A, 1904, vol. 203, pp. 385–420.

  10. Hasselman, D.P.H. and Johnson, L.F., Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 1987, vol. 21, no. 6, pp. 508–515. https://doi.org/10.1177/002199838702100602

    Article  Google Scholar 

  11. Kolesnikov, V.I., Bardushkin, V.V., Lavrov, I.V., et al., A generalized effective-field approximation for an inhomogeneous medium with coated inclusions, Dokl. Phys., 2017, vol. 62, no. 9, pp. 415–419. https://doi.org/10.1134/S1028335817090087

    Article  Google Scholar 

  12. Kartashov, E.M. and Kudinov, V.A., Analiticheskie metody teorii teploprovodnosti i ee prilozhenii (Analytical Methods of the Theory of thermal Conductivity and Its Applications), Moscow: Lenand, 2018.

  13. Bragg, W.L. and Pippard, A.B., The form birefringence of macromolecules, Acta Cryst., 1953, vol. 6, nos. 11–12, pp. 865–867.

    Article  Google Scholar 

  14. Bohren, C. and Huffman, D., Absorption and Scattering of Light by Small Particles, Chichester: Wiley, 1983.

    Google Scholar 

  15. Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., and Yakovlev, V.B., Predicting the effective thermal conductivity of multicomponent textured tribocomposites, Russ. Eng. Res., 2017, vol. 37, no. 11, pp. 957–961.

    Article  Google Scholar 

  16. Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., et al., On calculation of the effective thermal conductivity of textured tribocomposites, Ekol. Vestn. Nauchn. Tsentrov Chenomorsk. Ekon. Sotrudn., 2017, no. 2, pp. 48–56.

  17. Lavrov, I.V., Bardushkin, V.V., Sychev, A.P., et al., Predicting the effective thermal conductivity of tribocomposites with coated antifrictional inclusions, Russ. Eng. Res., 2019, vol. 39, no. 2, pp. 117–121.

    Article  Google Scholar 

  18. Fizicheskie velichiny: spravochnik (Physical Values: Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

Download references

Funding

Financial support was provided by the Russian Foundation for Basic Research (grant 19-08-00111-а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Sychev.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrov, I.V., Kochetygov, A.A., Bardushkin, V.V. et al. Effective Thermal Conductivity of Composites with Contact Thermal Resistance between the Inclusions and the Matrix. Russ. Engin. Res. 40, 622–627 (2020). https://doi.org/10.3103/S1068798X20080134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X20080134

Keywords:

Navigation