Skip to main content
Log in

Micelle Mediated Extraction and Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Copper in Different Mushroom Species

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A micelle mediated separation and preconcentration method for flame atomic absorption spectrophotometric (FAAS) determination of Cu was developed. The method is based on complex formation between Cu and 1-(2-pyridylazo)-2-naphthol and cloud point extraction with Tergitol NP-7 surfactant prior to FAAS determination. The parameters affecting quantitative extraction of copper, including pH, surfactant and ligand concentrations, incubation time and temperature, were examined and optimized. Under optimum conditions, interference effects of other ions were studied, and tolerance ratios of interference ions were given. Under the optimal conditions, detection and quantitation limits were found as 3 and 8 μg/L, respectively. Linear dynamic range for Cu2+ was determined to be 0.13–1.5 μg/mL. Relative standard deviations were below 6% throughout the experiments. Enhancement factor was determined as 25. Applicability of the method was proved by analysis of standard reference materials. The developed method was applied to determine trace copper contents in different mushroom species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Arain, S.A., Kazi, T.G., Afridi, H.I., Abbasi, A.R., Panhwar, A.H., Naeemullah, Shanker, B., and Arain, M.B., Spectrochim. Acta, Part A, 2014, vol. 133, p. 651.

    Article  CAS  Google Scholar 

  2. Nadaroglu, H., Kalkan, E., and Celik, H., Int. J. Environ. Sci. Technol., 2015, vol. 12, p. 2079.

    Article  CAS  Google Scholar 

  3. Meng, L., Chen, C., and Yang, Y., Anal. Lett., 2015, vol. 48, p. 453.

    Article  CAS  Google Scholar 

  4. Wen, X., Zhao, Y., Deng, Q., Guo, J., Zhao, X., and Ji, S., Microchim. Acta, 2012, vol. 178, p. 139.

    Article  CAS  Google Scholar 

  5. Ghaedi, M., Niknam, K., Niknam, E., and Soylak, M., J. Chin. Chem. Soc., 2009, vol. 56, p. 981.

    Article  CAS  Google Scholar 

  6. Gürkan, R. and Altunay, N., Food Chem., 2015, vol. 177, p. 102.

    Article  Google Scholar 

  7. Bisgin, A.T., Narin, I., Ucan, M., and Soylak, M., Oxid. Commun., 2015, vol. 38, p. 232.

    CAS  Google Scholar 

  8. Coo, L., Cardwell, T.J., Cattrall, R.W., and Kolev, S.D., Anal. Chim. Acta, 1998, vol. 360, p. 153.

    Article  CAS  Google Scholar 

  9. Szabó, L., Herman, K., Mircescu, N.E., Fălămaş¸ A., Leopold, L.F., Leopold, N., Buzumurgă, C., and Chiş, V., Spectrochim. Acta, Part A, 2012, vol. 93, p. 266.

    Article  Google Scholar 

  10. Jayawardane, B.M., Coo, L., Cattrall, R.W., and Kolev, S.D., Anal. Chim. Acta, 2013, vol. 803, p. 106.

    Article  CAS  Google Scholar 

  11. Pérez-Gramatges, A. and Chatt, A., J. Radioanal. Nucl. Chem., 2012, vol. 294, p. 163.

    Article  Google Scholar 

  12. Candir, S., Narin, I., and Soylak, M., Talanta, 2008, vol. 77, p. 289.

    Article  CAS  Google Scholar 

  13. Zhao, L., Zhong, S., Fang, K., Qian, Z., and Chen, J., J. Hazard. Mater., 2012, vols. 239–240, p. 206.

    Article  Google Scholar 

  14. Coelho, L.M., Bezerra, M.A., Arruda, M.A.Z., Bruns, R.E., and Ferreira, S.L.C., Sep. Sci. Technol., 2008, vol. 43, p. 815.

    Article  CAS  Google Scholar 

  15. Silva, S.G., Oliveira, P.V., and Rocha, F.R.P., J. Braz. Chem. Soc., 2010, vol. 21, p. 234.

    Article  CAS  Google Scholar 

  16. Şahin, Ç.A., Tokgöz, İ., and Bektaş, S., J. Hazard. Mater., 2010, vol. 181, p. 359.

    Article  Google Scholar 

  17. Citak, D. and Tuzen, M., Food Chem. Toxicol., 2010, vol. 48, p. 1399.

    Article  CAS  Google Scholar 

  18. Javadi, N. and Dalali, N., J. Iran. Chem. Soc., 2011, vol. 8, p. 231.

    Article  CAS  Google Scholar 

  19. Shokrollahi, A., Ghaedi, M., Hossaini, O., Khanjari, N., and Soylak, M., J. Hazard. Mater., 2008, vol. 160, p. 435.

    Article  CAS  Google Scholar 

  20. Gao, Y., Wu, P., Li, W., Xuan, Y., and Hou, X., Talanta, 2010, vol. 81, p. 586.

    Article  CAS  Google Scholar 

  21. Shoaee, H., Roshdi, M., Khanlarzadeh, N., and Beiraghi, A., Spectrochim. Acta, Part A, 2012, vol. 98, p. 70.

    Article  CAS  Google Scholar 

  22. Ghaedi, M., Shokrollahi, A., Niknam, K., Niknam, E., and Soylak, M., Cent. Eur. J. Chem., 2009, vol. 7, p. 148.

    Google Scholar 

  23. Ghaedi, M., Shokrollahi, A., Niknam, K., and Soylak, M., Sep. Sci. Technol., 2009, vol. 44, p. 773.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Taner Bişgin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeliz Camcı, Bişgin, A.T., Sürme, Y. et al. Micelle Mediated Extraction and Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Copper in Different Mushroom Species. J Anal Chem 75, 1131–1136 (2020). https://doi.org/10.1134/S1061934820090166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820090166

Keywords:

Navigation