Skip to main content
Log in

Rapid Screening and Determination of Residual Amounts of β-Lactam Antibiotics in Foods by Ultrahigh-Performance Liquid Chromatography–High-Resolution Quadrupole Time-of-Flight Mass Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We developed procedures for the rapid screening and sensitive determination of residues of 19 β-lactam antibiotics in matrices of various food products (meat, kidneys, liver, bacon, milk, eggs, honey) using ultrahigh-performance liquid chromatography–high-resolution quadrupole time-of-flight mass spectrometry. Acetonitrile was used to precipitate proteins and extract analytes; the extract was used for analysis without further purification. Identification was performed by exact masses and retention times of analyte ions and by assessing the ion isotope distribution (mSigma). Penicillins form positively charged protonated adducts with methanol, while cephalosporins form protonated ions or adducts with sodium. We estimated matrix effect in the analysis of various samples. The matrix effect is slightly different for milk, meat, liver, kidneys, eggs, and salted pork fat (RSD ≤ 7%) and significantly different for honey. The detected analytes were quantified both by the standard addition method and using matrix calibration (RSD ≤ 5%). The recovery of β-lactam antibiotics from different matrices in two versions of sample preparation ranged from 75 to 110%; RSD ≤ 11% under the conditions of matrix calibration. The limits of detection were 0.05–5 ng/g; the analytical ranges were from 1–10 to 200 ng/g (R2 ≥ 0.99); the duration of screening the samples was 15–20 min; the duration of the analysis of the samples was 20–30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lehotay, S.J. and Lightfield, A.R., Drug Test. Anal., 2012, vol. 4, p. 91.

    Article  Google Scholar 

  2. Zhan, J., Yu, X., Zhong, Y., Zang, Z., Cui, X., Peng, J., Feng, R., Liu, X., and Zhu, Y., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2012, vol. 906, p. 48.

    Article  CAS  Google Scholar 

  3. Lopes, R.P., Reyes, R.C., Romero-González, R., Martínez-Vidal, J.L.M., and Frenich, A.G., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2012, vol. 895–896, p. 39. https://doi.org/10.1016/j.jchromb.2012.03.011

    Article  CAS  Google Scholar 

  4. Freitas, A., Barbosa, J., and Ramos, F., Meat Sci., 2014, vol. 98, p. 58.

    Article  CAS  Google Scholar 

  5. Li, N., Feng, F., Yang, B., Jiang, P., and Chu, X., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2014, vol. 945–946, p. 110.

    Google Scholar 

  6. Han, R.W., Zheng, N., Yu, Z.N., Wang, J., Xu, X.M., Qu, X.Y., Li, S.L., Zhang, Y.D., and Wang, J.Q., Food Chem., 2015, vol. 181, p. 119.

    Article  CAS  Google Scholar 

  7. Moretti, S., Dusi, G., Giusepponi, D., Pellicciotti, S., Rossi, R., Saluti, G., Cruciani, G., and Galarini, R., J. Chromatogr. A, 2016, vol. 1429, p. 175.

    Article  CAS  Google Scholar 

  8. Yin, Z., Chai, T., Mu, P., Xu, N., Song, Y., Wang, X., Jia, Q., and Qiu, J., J. Chromatogr. A, 2016, vol. 1463, p. 49.

    Article  CAS  Google Scholar 

  9. Sun, L., Jia, L., Xie, X., Xie, K., Wang, J., Liu, J., Cui, L., Zhang, G., Dai, G., and Wang, J., Food Chem., 2016, vol. 192, p. 313.

    Article  CAS  Google Scholar 

  10. Huang, Z., Pan, X.-D., Huang, B., Xu, J.-J., Wang, M.-L., and Ren, Y.-P., Food Control, 2016, vol. 66, p. 145.

    Article  CAS  Google Scholar 

  11. Dorival-García, N., Junza, A., Zafra-Gomez, A., Barron, D., and Navalon, A., Food Control, 2016, vol. 60, p. 382.

    Article  Google Scholar 

  12. Lara, F.J., Olmo-Iruela, M., Cruces-Blanco, C., Quesada-Molina, C., and García-Campaña, A.M., TrAC,Trends Anal. Chem., 2012, vol. 38, p. 52.

    Article  CAS  Google Scholar 

  13. Zhang, Y., Li, X., Liu, X., Zhang, J., Cao, Y., Shi, Z., and Sun, H., J. Dairy Sci., 2015, vol. 98, p. 8433.

    Article  CAS  Google Scholar 

  14. Amelin, V., Korotkov, A., and Andoralov, A., J. AOAC Int., 2016, vol. 99, no. 6, p. 1600.

    Article  CAS  Google Scholar 

  15. Ortelli, D., Cognard, E., Jan, Ph., and Edder, P., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2009, vol. 877, p. 2363.

    Article  CAS  Google Scholar 

  16. Perez, M.L., Plaza-Bolanos, P., Romero-González, A.R., Martínez-Vidal, J.L., and Garrido-Frenich, A., J. Chromatogr. A, 2012, vol. 1248, p. 130.

    Article  Google Scholar 

  17. Peters, R.J.B., Stolker, A.A.M., Mol, J.G.J., Lommen, A., Lyris, E., Angelis, Y., Vonaparti, A., Stamou, M., Georgakopoulos, C., and Nielen, M.W.F., TrAC,Trends Anal. Chem., 2010, vol. 29, no. 11, p. 1250.

    Article  CAS  Google Scholar 

  18. Kaufmann, A., Butcher, P., Maden, K., Walker, S., and Widmer, M., Anal. Chim. Acta, 2011, vol. 700, p. 86.

    Article  CAS  Google Scholar 

  19. Kaufmann, A., Anal. Bioanal. Chem., 2012, vol. 403, p. 1233.

    Article  CAS  Google Scholar 

  20. Kaufmann, A., Butcher, P., Maden, K., and Widmer, M., J. Chromatogr. A, 2008, vol. 1194, p. 66.

    Article  CAS  Google Scholar 

  21. Stolker, A.A.M., Rutgers, P., Oosterink, E., Lasaroms, J.J.P., Petrs, P.J.R., Rhijn, J.A., and Nielen, M.W.F., Anal. Bioanal. Chem., 2008, vol. 391, p. 2309.

    Article  CAS  Google Scholar 

  22. Peters, R.J.B., Bolck, Y.J.C., Rutgers, P., Stolker, A.A.M., and Nielen, M.W.F., J. Chromatogr. A, 2009, vol. 1216, p. 8206.

    Article  CAS  Google Scholar 

  23. Pérez-Ortega, P., Lara-Ortega, F.J., Gilbert-López, B., Moreno-González, L.D., García-Reyes, J.F., and Molina-Díaz, A., Food Anal. Methods, 2017, vol. 10, p. 1216. https://doi.org/10.1007/s12161-016-0678-0

    Article  Google Scholar 

  24. Grujic, S., Vasiljevic, T., Lausevic, M., and Ast, T., Rapid Commun. Mass Spectrom., 2008, vol. 22, p. 67.

    Article  CAS  Google Scholar 

  25. Grujic, S., Vasiljevic, T., and Lausevic, M., J. Chromatogr. A, 2009, vol. 1216, p. 4989.

    Article  CAS  Google Scholar 

  26. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin.

  27. Technical Regulation of the Customs Union (TR CU 033/2013) “On the Safety of Milk and Dairy Products” (Adopted by the Decision of the Council of the Eurasian Economic Commission no. 67 of October 9, 2013).

  28. Technical Regulation of the Customs Union (TR CU 034/2013) “On the Safety of Meat and Meat Products” (Adopted by the Decision of the Council of the Eurasian Economic Commission no. 68 of October 9, 2013).

  29. Technical Regulation of the Customs Union (TR TS 021/2011) “On the Safety of Food Products” (Approved by the Decision of the Commission of the Customs Union no. 880 of December 9, 2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Amelin.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amelin, V.G., Bol’shakov, D.S. & Podkolzin, I.V. Rapid Screening and Determination of Residual Amounts of β-Lactam Antibiotics in Foods by Ultrahigh-Performance Liquid Chromatography–High-Resolution Quadrupole Time-of-Flight Mass Spectrometry. J Anal Chem 75, 1177–1188 (2020). https://doi.org/10.1134/S1061934820070023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820070023

Keywords:

Navigation