Skip to main content
Log in

DFT study for Structural and Electronic Properties of N2O3 Adsorption onto C20 Fullerene

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Structural and electronic properties of N2O3 adsorbed on C20 fullerene were investigated by Density Functional Theory. Before N2O3 was adsorbed on C20 fullerene surface, the structural properties of the isomers of the N2O3 were calculated. According to the total energy calculations, asym-N2O3 is the most stable isomer since it has lower energy than the other two isomers. Data obtained for the structural properties of N2O3 molecule are in agreement with the previous studies. After full structural optimization without any restrictions, the most stable structures were obtained. The adsorption energies with no dissociation of N2O3 were in the range of −2.88 to −3.55 eV for LDA and −2.02 to −2.45 eV for GGA. On the other hand, the dissociative adsorption yields a lower total energy with Eads values of −3.72 and −2.93 eV in LDA and GGA, respectively. According to these values, adsorption can be evaluated as chemisorption for all stable structures. The adsorption occurs with no reaction barriers except for one configuration. Although the co-adsorption of NO and NO2 molecules on the same fullerene is energetically less favorable compared to their adsorptions on separate fullerenes, the dissociative co-adsorption occurs with no energy barrier. The electronic structures are dominated by charge transfer from the fullerene to the adsorbate. The obtained HOMO-LUMO gap (GapHL) values are in the range of 1.02 and 1.35 eV for both LDA and GGA, respectively. The results presented here can be expected to guide future experimental and theoretical studies as new hybrid material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Laane, J.R. Ohlsen, Prog. Inorg. Chem 27, 465 (1980).

    Google Scholar 

  2. F.A. Cotton, G. Wilkinson, in Advanced Inorganic Chemistry (1988), Vol. 6

  3. F. Melen, M. Herman, J. Phys. Chem. Ref. Data 21, 831 (1992).

    ADS  Google Scholar 

  4. W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (John Wiley & Sons, 1999).

  5. L. Allen, H.C. Ansel, Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems (Lippincott Williams & Wilkins, 2013).

  6. J. Hahn, P.J. Crutzen, Philos. Trans. R. Soc. B. 296, 521 (1982).

    ADS  Google Scholar 

  7. B.J.F. Pitts, J.N. Pitts, Chemistry of the upper and lower atmosphere: Theory, Experiments, and Applications (Academic Press, New York, 2000).

  8. B. Dimitriades, Environ. Sci. Technol. 6, 253 (1972).

    ADS  Google Scholar 

  9. B. Rani, U. Singh, A. Chuhan, D. Sharma, R. Maheshwari, J. Adv. Sci. Res. 2, 4 (2011).

    Google Scholar 

  10. A. Ravishankara, J.S. Daniel, R.W. Portmann, Science 326, 123 (2009).

    ADS  Google Scholar 

  11. V. Ramanathan, Y. Feng, Atmos. Environ. 43, 37 (2009).

    ADS  Google Scholar 

  12. L.E. Revell, F. Tummon, R.J. Salawitch, A. Stenke, T. Peter, Geophys. Res. Lett. 42, 10 (2015).

    Google Scholar 

  13. H. Hidalgo, P. Crutzen, J. Geophys. Res. 82, 5833 (1977).

    ADS  Google Scholar 

  14. A. Gettelman, S.L. Baughcum, J. Geophys. Res. Atmos. 104, 8317 (1999).

    ADS  Google Scholar 

  15. H.S. Johnston, M.J. Prather, R. Watson, NASA Ref. Publ. 1250, 36 (1991).

    Google Scholar 

  16. H.S. Johnston, D.E. Kinnison, D.J. Wuebbles, J. Geophys. Res. Atmos. 94, 16351 (1989).

    ADS  Google Scholar 

  17. G.P. Brasseur, J.F. Müller, C. Granier, J. Geophys. Res. Atmos. 101, 1423 (1996).

    ADS  Google Scholar 

  18. M. Coffey, J. Geophys. Res. Atmos. 101, 6767 (1996).

    ADS  Google Scholar 

  19. C. Zerefos, K. Tourpali, A. Bais, J. Geophys. Res. Atmos. 99, 25741 (1994).

    ADS  Google Scholar 

  20. X. Tie, G. Brasseur, Geophys. Res. Lett. 22, 3035 (1995).

    ADS  Google Scholar 

  21. G.E. Likens, R.F. Wright, J.N. Galloway, T.J. Butler, Sci. Am. 241, 43 (1979).

    Google Scholar 

  22. A.R. Townsend, R.W. Howarth, F.A. Bazzaz, M.S. Booth, C.C. Cleveland, S.K. Collinge, A.P. Dobson, P.R. Epstein, E.A. Holland, D.R. Keeney, et al., Front. Ecol. Environ. 1, 240 (2003) .

    Google Scholar 

  23. U. Pöschl, Angew. Chem. Int. Ed. 44, 7520 (2005).

    Google Scholar 

  24. B.J. Finlayson-Pitts, J.N. Pitts, Science 276, 1045 (1997).

    Google Scholar 

  25. K. Lee, J. Xue, A.S. Geyh, H. Ozkaynak, B.P. Leaderer, C.J. Weschler, J.D. Spengler, Environ. Health Persp. 110, 145 (2002).

    Google Scholar 

  26. A.H. Wolfe, J.A. Patz, Ambio: A, J. Human Environ. 31, 120 (2002).

    Google Scholar 

  27. P.K. Lala, A. Orucevic, Cancer Metast. Rev. 17, 91 (1998).

    Google Scholar 

  28. D. Wink, Y. Vodovotz, J. Cook, M. Krishna, S. Kim, D. Coffin, W. DeGraff, A. Deluca, J. Liebmann, J. Mitchell, Biochem. Biokhimiia 63, 802 (1998).

    Google Scholar 

  29. H. Ohshima, H. Bartsch, Mutat. Res. Fund. Mol. M. 305, 253 (1994).

    Google Scholar 

  30. H. Wiseman, B. Halliwell, Biochem. J. 313, 17 (1996).

    Google Scholar 

  31. X. Wang, Q. Zheng, K. Fan, J. Mol. Struct. 403, 245 (1997).

    ADS  Google Scholar 

  32. A.H. Brittain, A.P. Cox, R.L. Kuczkowski, T. Faraday Soc. 65, 1963 (1969).

    Google Scholar 

  33. E.J. Sluyts, B.J. Van der Veken, J. Mol. Struct. 320, 249 (1994).

    ADS  Google Scholar 

  34. R.F. Holland, W.B. Maier, J. Chem. Phys. 78, 2928 (1983).

    ADS  Google Scholar 

  35. I.C. Hisatsune, J.P. Devlin, Y. Wada, J. Chem. Phys. 33, 714 (1960).

    ADS  Google Scholar 

  36. E.M. Nour, L.H. Chen, J. Laane, J. Phys. Chem. 87, 1113 (1983).

    Google Scholar 

  37. C.H. Bibart, G.E. Ewing, J. Chem. Phys. 61, 1293 (1974).

    ADS  Google Scholar 

  38. W.G. Fateley, H.A. Bent, B. Crawford Jr, J. Chem. Phys. 31, 204 (1959).

    ADS  Google Scholar 

  39. E.L. Varetti, G.C. Pimentel, J. Chem. Phys. 55, 3813 (1971).

    ADS  Google Scholar 

  40. T. Vladimiroff, J. Mol. Struct. Theochem. 342, 103 (1995).

    Google Scholar 

  41. A. Stirling, I. Pápai, J. Mink, D.R. Salahub, J. Chem. Phys. 100, 2910 (1994).

    ADS  Google Scholar 

  42. Z. Sun, Y.D. Liu, C.L. Lv, R.G. Zhong, J. Mol. Struct. Theochem 908, 107 (2009).

    Google Scholar 

  43. M. Hawkins, A.J. Downs, J. Chem. Phys. 88, 1527 (1984).

    Google Scholar 

  44. C.I. Lee, Y.P. Lee, X. Wang, Q.Z. Qin, J. Chem. Phys. 109, 10446 (1998).

    ADS  Google Scholar 

  45. X. Wang, Q.Z. Qin, Spectrochim. Acta A 54, 575 (1998).

    ADS  Google Scholar 

  46. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985).

    ADS  Google Scholar 

  47. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B.v. Issendorff, Nature 407, 60 (2000).

    ADS  Google Scholar 

  48. A. Hirsch, M. Brettreich, Fullerenes: Chemistry and Reactions (John Wiley & Sons, 2006).

  49. S. Bosi, T. Da Ros, G. Spalluto, M. Prato, Eur. J. Med. Chem. 38, 913 (2003).

    Google Scholar 

  50. T. Da Ros, M. Prato, Chem. Commun. 8, 663 (1999).

    Google Scholar 

  51. Z. Chen, R. Mao, Y. Liu, Curr. Drug Metab. 13, 1035 (2012).

    Google Scholar 

  52. P. Anilkumar, F. Lu, L. Cao, P.G. Luo, J.H. Liu, S. Sahu, K.N. Tackett II, Y. Wang, Y.P. Sun, Curr. Med. Chem. 18, 2045 (2011).

    Google Scholar 

  53. R.B. Ross, C.M. Cardona, D.M. Guldi, S.G. Sankaranarayanan, M.O. Reese, N. Kopidakis, J. Peet, B. Walker, G.C. Bazan, E. Van Keuren, et al., Nat. Mater. 8, 208 (2009).

    ADS  Google Scholar 

  54. C. Zeng, H. Wang, B. Wang, J. Yang, J.G. Hou, Appl. Phys. Lett. 77, 3595 (2000).

    ADS  Google Scholar 

  55. C. Zhang, W. Sun, Z. Cao, J. Chem. Phys. 126, 144306 (2007).

    ADS  Google Scholar 

  56. J.F. Nierengarten, New J. Chem. 28, 1177 (2004).

    Google Scholar 

  57. M. Prato, J. Mater. Chem. 7, 1097 (1997).

    Google Scholar 

  58. F. Cataldo, G. Compagnini, L. D’Urso, V. Mita, G. Strazzulla, O. Ursini, G. Angelini, Fuller. Nanotub. Car. N. 16, 154 (2008).

    Google Scholar 

  59. M.T. Baei, Heteroatom Chem. 24, 516 (2013).

    Google Scholar 

  60. J.M. Soler, E. Artacho, J.D. Gale, A. Garca, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  61. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

    ADS  Google Scholar 

  62. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).

    ADS  Google Scholar 

  63. J.P. Perdew, A. Zunger, Phys. Rev. B. 23, 5048 (1981).

    ADS  Google Scholar 

  64. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

  65. N. Troullier, J.L. Martins, Phys. Rev. B. 43, 1993 (1991).

    ADS  Google Scholar 

  66. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    ADS  Google Scholar 

  67. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garcia, J.M. Soler, Phys. Status Solidi B 215, 809 (1999).

    ADS  Google Scholar 

  68. I.R. Beattie, S.W. Bell, J. Chem. Soc. 1681 (1957).

  69. E. Çalskan, S. Göktürk, Sep. Sci. Technol. 45, 244 (2010).

    Google Scholar 

  70. G. Gereli, Y. Seki, İ.M. Kusoğlu, K. Yurdakoç, J. Colloid Interfaces Sci. 299, 155 (2006).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhat Demiray.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demiray, F. DFT study for Structural and Electronic Properties of N2O3 Adsorption onto C20 Fullerene. Eur. Phys. J. D 74, 177 (2020). https://doi.org/10.1140/epjd/e2020-10141-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10141-5

Keywords

Navigation