Skip to main content
Log in

Stable optimization of finite-difference operators for seismic wave modeling

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The finite difference scheme is now widely used in the reverse time migration and full waveform inversion. Their results are dependent on the accuracy of finite difference operators. In this paper, we combine the cosine function with the original window function to construct a new window function, in order to obtain higher precision finite difference operators. The absolute error curves of the optimized finite difference operators are close to zero for low wavenumbers. In other words, we do not observe an oscillating curve of absolute errors produced by other optimized methods. In order to overcome the limitations of a single graphics processing unit (GPU), we developed the multiple-GPU method for the elastic wave equation. Numerical experimental results show that our new window function can control the numerical dispersion better than the binomial window and scaled binomial window, and the multiple-GPU computation is very stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bansal R. and Sen M.K., 2008. Finite-difference modelling of S-wave splitting in anisotropic media. Geophys. Prospect., 56, 293–312.

    Article  Google Scholar 

  • Billette F.J. Brandsberg-Dahl S., 2005. The 2004 BP velocity benchmark. 67th EAGE Conference & Exhibition, DOI: https://doi.org/10.3997/2214-4609-pdb.1.B035.

  • Bohlen T. and Saenger E.H., 2006. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves. Geophysics, 71, T109–T115.

    Article  Google Scholar 

  • Chu C.L. and Stoffa P.L., 2012. Determination of finite-difference weightsusing scaled binomial windows. Geophysics, 77, W17–W26.

    Article  Google Scholar 

  • Diniz P.S.R., da Silva E.A.B. and Netto S.L., 2010. Digital Signal Processing System Analysis and Design. 2nd Edition. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Graves R.W., 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Amer., 86, 1091–1106.

    Google Scholar 

  • Hayashi K. and Burns D.R., 1999. Variable grid finite-difference modeling including surface topography. SEG Technical Program Expanded Abstracts 1999, 528–531.

  • Igel H., Mora P. and Riollet B., 1995. Anisotropic wave propagation through finite-difference grids. Geophysics, 60, 1203–1216.

    Article  Google Scholar 

  • Kindelan M., Kamel A. and Sguazzero P., 1990. On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics, 55, 107–110

    Article  Google Scholar 

  • Kindelan M., Kamel A. and Sguazzero P., 2012. On the construction and efficiency of staggered numerical differentiators for the wave equation. Geophysics, 55, 107–110.

    Article  Google Scholar 

  • Krüger O.S., Saenger E.H. and Shapiro S.A., 2005. Scattering and diffraction by a single crack: an accuracy analysis of the rotated staggered grid. Geophys. J. Int., 162, 25–31.

    Article  Google Scholar 

  • Liu Y., 2019. Acoustic and elastic finite-difference modeling by optimal variable-length spatial operators. Geophysics, 85, T57–T70, DOI: https://doi.org/10.1190/geo2019-0145.1.

    Article  Google Scholar 

  • Liu Y. and Sen M.K., 2009. A new time-space domain high-order finite-different method for the acoustic wave equation. J. Comput. Phys., 228, 8779–8806.

    Article  Google Scholar 

  • Liu Y. and Sen M.K., 2011. Finite-difference modeling with adaptive variable-length spatial operators. Geophysics, 76, T79–T89.

    Article  Google Scholar 

  • Madariaga R., 1976. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Amer., 66, 639–666.

    Google Scholar 

  • Opršal I. and Zahradník J., 1999. Elastic finite-difference method for irregular grids. Geophysics, 64, 240–250.

    Article  Google Scholar 

  • Saenger E.H., Gold N. and Shapiro S.A., 2000. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion, 31, 77–92.

    Article  Google Scholar 

  • Virieux J., 1986. P-SV wave propagation in heterogeneous media: velocity stress finite difference method. Geophysics, 51, 889–901.

    Article  Google Scholar 

  • Wang Y. and Schuster G.T., 1996. Finite-difference variable grid scheme for acoustic and elastic wave equation modeling. SEG Technical Program Expanded Abstracts 1996, 674–677.

  • Wang Z. and Liu H., 2014. Optimized finite-difference operators based on Chebyshev autoconvolution combined window. SEG Technical Program Expanded Abstracts 2014, 3541–3545.

  • Yang L., Yan H. and Liu H., 2014. Least squares staggered-grid finite-difference for elastic wave modelling. Explor. Geophys., 45, 255–260.

    Article  Google Scholar 

  • Zhang J.H. and Yao Z.X., 2012. Optimized finite-difference operator for broadband seismic wave modeling. Geophysics, 78, A13–A18.

    Article  Google Scholar 

  • Zheng W.Q., Meng X.H., Liu J.H. and Wang J., 2016. High precision elastic wave equation forward modeling based on cosine modulated Chebyshev window function. Chinese J. Geophys.-Chinese Ed., 59, 2650–2662 (in Chinese).

    Google Scholar 

  • Zhou B. and Greenhalgh S.A., 1992. Seismic scalar wave equation modeling by a convolutional differentiator. Bull. Seismol. Soc. Amer., 82, 289–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hong, L. Stable optimization of finite-difference operators for seismic wave modeling. Stud Geophys Geod 64, 452–464 (2020). https://doi.org/10.1007/s11200-019-0487-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-019-0487-1

Keywords

Navigation