Skip to main content
Log in

A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Despite the recent progress on controllable synthesis of alkynyl-protected Au nanoclusters, the effective synthetic means are very limited and the cluster formation process still remains puzzling. Here, we develop a novel synchronous nucleation and passivation strategy to fabricate Au36(PA)24 (PA=phenylacetylenyl) nanoclusters with high yield. In Au36(PA)24 formation process, Au22(PA)18 as key intermediate was identified. Meanwhile, Au22(PA)18 can be synthesized under a low amount of reductant, and by employing more reductants, Au22(PA)18 can turn into Au36(PA)24 eventually. Moreover, the structure evolution from Au22(PA)18 to Au36(PA)24 is proposed, where four Au13 cuboctahedra can yield one Au28 kernel. Finally, the ratiocination is verified by the good accordance between the predicted intermediate/product ratio and the experimental value. This study not only offers a novel synthetic strategy, but also sheds light on understanding the structural evolution process of alkynyl-protected Au nanoclusters at atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S, Yu H, Zhu M. Sci China Chem, 2015, 59: 206–208

    Google Scholar 

  2. Yao Q, Chen T, Yuan X, Xie J. Acc Chem Res, 2018, 51: 1338–1348

    CAS  PubMed  Google Scholar 

  3. Jin R, Zeng C, Zhou M, Chen Y. Chem Rev, 2016, 116: 10346–10413

    CAS  PubMed  Google Scholar 

  4. Higaki T, Li Q, Zhou M, Zhao S, Li Y, Li S, Jin R. Acc Chem Res, 2018, 51: 2764–2773

    CAS  PubMed  Google Scholar 

  5. Kang X, Zhu M. Chem Soc Rev, 2019, 48: 2422–2457

    CAS  PubMed  Google Scholar 

  6. Yan J, Teo BK, Zheng N. Acc Chem Res, 2018, 51: 3084–3093

    CAS  PubMed  Google Scholar 

  7. Gan Z, Xia N, Wu Z. Acc Chem Res, 2018, 51: 2774–2783

    CAS  PubMed  Google Scholar 

  8. Wang Z, Qu QP, Su HF, Huang P, Gupta RK, Liu QY, Tung CH, Sun D, Zheng LS. Sci China Chem, 2019, 63: 16–20

    Google Scholar 

  9. Yuan X, Luo Z, Yu Y, Yao Q, Xie J. Chem Asian J, 2013, 8: 858–871

    CAS  PubMed  Google Scholar 

  10. Wu XH, Wei Z, Yan BJ, Huang RW, Liu YY, Li K, Zang SQ, Mak TCW. CCS Chem, 2019, 1: 553–560

    CAS  Google Scholar 

  11. Yan J, Zhang J, Chen X, Malola S, Zhou B, Selenius E, Zhang X, Yuan P, Deng G, Liu K, Su H, Teo BK, Häkkinen H, Zheng L, Zheng N. Natl Sci Rev, 2018, 5: 694–702

    CAS  Google Scholar 

  12. Du Y, Sheng H, Astruc D, Zhu M. Chem Rev, 2020, 120: 526–622

    CAS  PubMed  Google Scholar 

  13. Chen S, Ma H, Padelford JW, Qinchen W, Yu W, Wang S, Zhu M, Wang G. J Am Chem Soc, 2019, 141: 9603–9609

    CAS  PubMed  Google Scholar 

  14. Jia TT, Yang G, Mo SJ, Wang ZY, Li BJ, Ma W, Guo YX, Chen X, Zhao X, Liu JQ, Zang SQ. ACS Nano, 2019, 13: 8320–8328

    CAS  PubMed  Google Scholar 

  15. Zheng K, Setyawati MI, Leong DT, Xie J. ACS Nano, 2017, 11: 6904–6910

    CAS  PubMed  Google Scholar 

  16. Yan L, Yu Y, Xia Z. Sci China Chem, 2018, 61: 619–626

    CAS  Google Scholar 

  17. Ito S, Takano S, Tsukuda T. J Phys Chem Lett, 2019, 10: 6892–6896

    CAS  PubMed  Google Scholar 

  18. Han XS, Luan X, Su HF, Li JJ, Yuan SF, Lei Z, Pei Y, Wang QM. Angew Chem Int Ed, 2020, 59: 2309–2312

    CAS  Google Scholar 

  19. Guan ZJ, Hu F, Li JJ, Wen ZR, Lin YM, Wang QM. J Am Chem Soc, 2020, 142: 2995–3001

    CAS  PubMed  Google Scholar 

  20. Li JJ, Guan ZJ, Lei Z, Hu F, Wang QM. Angew Chem, 2019, 58: 1083–1087

    CAS  Google Scholar 

  21. Wan XK, Guan ZJ, Wang QM. Angew Chem Int Ed, 2017, 56: 11494–11497

    CAS  Google Scholar 

  22. Guan ZJ, Hu F, Li JJ, Liu ZR, Wang QM. Nanoscale, 2020, 12: 13346–13350

    CAS  PubMed  Google Scholar 

  23. Lei Z, Li JJ, Wan XK, Zhang WH, Wang QM. Angew Chem Int Ed, 2018, 57: 8639–8643

    CAS  Google Scholar 

  24. Wan XK, Tang Q, Yuan SF, Jiang D, Wang QM. J Am Chem Soc, 2015, 137: 652–655

    CAS  PubMed  Google Scholar 

  25. Wan XK, Yuan SF, Tang Q, Jiang D, Wang QM. Angew Chem Int Ed, 2015, 54: 5977–5980

    CAS  Google Scholar 

  26. Wan XK, Xu WW, Yuan SF, Gao Y, Zeng XC, Wang QM. Angew Chem Int Ed, 2015, 54: 9683–9686

    CAS  Google Scholar 

  27. Wan XK, Wang JQ, Nan ZA, Wang QM. Sci Adv, 2017, 3: e1701823

    PubMed  PubMed Central  Google Scholar 

  28. Wang T, Zhang WH, Yuan SF, Guan ZJ, Wang QM. Chem Commun, 2018, 54: 10367–10370

    CAS  Google Scholar 

  29. Tang Q, Hu G, Fung V, Jiang DE. Acc Chem Res, 2018, 51: 2793–2802

    CAS  PubMed  Google Scholar 

  30. Lei Z, Wan XK, Yuan SF, Guan ZJ, Wang QM. Acc Chem Res, 2018, 51: 2465–2474

    CAS  PubMed  Google Scholar 

  31. Lei Z, Wang QM. Coord Chem Rev, 2019, 378: 382–394

    CAS  Google Scholar 

  32. Maity P, Wakabayashi T, Ichikuni N, Tsunoyama H, Xie S, Yamauchi M, Tsukuda T. Chem Commun, 2012, 48: 6085–6087

    CAS  Google Scholar 

  33. Wang Y, Su H, Xu C, Li G, Gell L, Lin S, Tang Z, Häkkinen H, Zheng N. J Am Chem Soc, 2015, 137: 4324–4327

    CAS  PubMed  Google Scholar 

  34. Gupta AK, Orthaber A. Chem Eur J, 2018, 24: 7536–7559

    CAS  PubMed  Google Scholar 

  35. Ma X, Tang Z, Qin L, Peng J, Li L, Chen S. Nanoscale, 2020, 12: 2980–2986

    CAS  PubMed  Google Scholar 

  36. Hooper TN, Butts CP, Green M, Haddow MF, McGrady JE, Russell CA. Chem Eur J, 2009, 15: 12196–12200

    CAS  PubMed  Google Scholar 

  37. CrysAlisPro. User Manual for Version 1.171.35.19, 2011

  38. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. J Appl Crystlogr, 2009, 42: 339–341

    CAS  Google Scholar 

  39. Tsunoyama R, Tsunoyama H, Pannopard P, Limtrakul J, Tsukuda T. J Phys Chem C, 2010, 114: 16004–16009

    CAS  Google Scholar 

  40. Tang Z, Xu B, Wu B, Robinson DA, Bokossa N, Wang G. Langmuir, 2011, 27: 2989–2996

    CAS  PubMed  Google Scholar 

  41. Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW. J Am Chem Soc, 2008, 130: 5940–5946

    CAS  PubMed  Google Scholar 

  42. Zhu M, Eckenhoff WT, Pintauer T, Jin R. J Phys Chem C, 2008, 112: 14221–14224

    CAS  Google Scholar 

  43. Liu C, Lin S, Pei Y, Zeng XC. J Am Chem Soc, 2013, 135: 18067–18079

    CAS  PubMed  Google Scholar 

  44. Chen Y, Zeng C, Kauffman DR, Jin R. Nano Lett, 2015, 15: 3603–3609

    CAS  PubMed  Google Scholar 

  45. Tang Z, Robinson DA, Bokossa N, Xu B, Wang S, Wang G. J Am Chem Soc, 2011, 133: 16037–16044

    CAS  PubMed  Google Scholar 

  46. Negishi Y, Nobusada K, Tsukuda T. J Am Chem Soc, 2005, 127: 5261–5270

    CAS  PubMed  Google Scholar 

  47. Bertorelle F, Russier-Antoine I, Calin N, Comby-Zerbino C, Bensalah-Ledoux A, Guy S, Dugourd P, Brevet PF, Sanader Ž, Krstić M, Bonačić-Koutecký V, Antoine R. J Phys Chem Lett, 2017, 8: 1979–1985

    CAS  PubMed  Google Scholar 

  48. Comby-Zerbino C, Perić M, Bertorelle F, Chirot F, Dugourd P, Bonačić-Koutecký V, Antoine R. Nanomaterials, 2019, 9: 457

    CAS  PubMed Central  Google Scholar 

  49. Das A, Li T, Nobusada K, Zeng C, Rosi NL, Jin R. J Am Chem Soc, 2013, 135: 18264–18267

    CAS  PubMed  Google Scholar 

  50. Wu Z, Du Y, Liu J, Yao Q, Chen T, Cao Y, Zhang H, Xie J. Angew Chem Int Ed, 2019, 58: 8139–8144

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Natural Science Funds for Distinguished Young Scholars (2015A030306006), Guangzhou Science and Technology Plan Projects (201804010323), the fundamental funds for central universities (SCUT, 2018ZD022), and the National Natural Science Foundation of China (21971070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaowei Chen or Zhenghua Tang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

11426_2020_9819_MOESM1_ESM.pdf

A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Ma, G., Qin, L. et al. A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate. Sci. China Chem. 63, 1777–1784 (2020). https://doi.org/10.1007/s11426-020-9819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9819-4

Navigation