Skip to main content
Log in

Study of the Change in the Structure and Properties of High-Entropic Alloys during Thermal and Thermomechanical Processing

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2021

This article has been updated

Abstract

Multicomponent alloys without a base element, also known as highly entropic alloys (HEAs), are of great interest for research. The microstructure of the Fe20Ni20Co20Cu20Al20 alloy in a cast, annealed, and deformed state, as well as its mechanical properties and hot deformation ability, is investigated in this article. This alloy is a typical representative of the high-entropy alloy family. Samples are melted in a vacuum induction furnace in an argon atmosphere and then cast into a copper mold. Differential scanning calorimetry results are used to determine the solidus temperature. The homogenization annealing of cast samples is carried out in a high-temperature furnace in air. The microstructure of the alloy is studied by scanning electron microscopy and X-ray diffraction. X-ray microanalysis using X-ray energy dispersive spectroscopy is used to determine the chemical composition of the phases. It is shown that crystallization results in the formation of three solid solutions with one bcc and two fcc crystalline structures. The mechanical properties are investigated under uniaxial compression. Hardness is also measured. The deformation tests are carried out on a DIL805A/D quenching-deformation dilatometer and a Gleeble System 3800 complex for physical modeling and dynamic thermomechanical testing at temperatures of 900–1100°С and strain rates of 0.01–1.0 s–1 for a true degree of deformation of up to 1. Optimum modes of homogenization annealing for the typical representative of HEAs and optimal deformation modes are selected to obtain high mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Change history

REFERENCES

  1. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Energy Mater., 2004, vol. 6, no. 5, pp. 299–303.

    CAS  Google Scholar 

  2. Miracle, D.B. and Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, no. 122, pp. 448–511.

  3. Portnoi, V.K., Leonov, A.V., Filippova, S.E., Streletskii, A.N., and Logacheva, A.I., Mechanochemical synthesis and heating-induced transformations of a high-entropy of Cr–Fe–Co–Ni–Al–Ti alloy, Inorg. Mater., 2014, vol. 50, no. 12, pp. 1202–1211.

    Article  CAS  Google Scholar 

  4. Ivchenko, M.V., Pushin, V.G., Uksusnikov, A.N., and Wanderka, N., Microstructure features of high-entropy equiatomic cast AlCrFeCoNiCu alloys, Phys. Met. Metallogr., 2013, vol. 114, no. 6, pp. 514–520.

    Article  Google Scholar 

  5. Wang, J., Liu, Y., Liu, B., Wang, Y., Cao, Y., Li, T., and Zhou, R., Flow behavior and microstructures of powder metallurgical CrFeCoNiMo. Two high entropy alloy during high temperature deformation, Mater. Sci. Eng., A, 2017, vol. 689, pp. 233–242.

    Article  CAS  Google Scholar 

  6. Louzguine, D.V. and Pol’kin, V.I., Bulk metal glasses: Fabrication, structure, and structural changes under heating, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 1, pp. 25–32.

    Article  Google Scholar 

  7. Chikova, O.A., Tsepelev, V.S., V’yukhin, V.V., and Shmakova, K.Yu., Kinetic viscosity of molten high entropy alloys Cu–Sn–In–Bi–Pb, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2015, special issue, pp. 57–60.

  8. Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C., Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng., A, 2013, vol. 565, pp. 51–62.

    Article  CAS  Google Scholar 

  9. Sathiaraj, G.D., Bhattacharjee, P.P., Tsai, C.W., and Yeh, J.W., Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy, Intermetallics, 2016, vol. 69, pp. 1–9.

    Article  CAS  Google Scholar 

  10. Tung, C.C., Yeh, J.W., Shun, T.T., Chen, S.K., Huang, Y.S., and Cheng, H.C., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system, Mater. Lett., 2007, vol. 61, pp. 1–5.

    Article  CAS  Google Scholar 

  11. Tomlin, I.A. and Kaloshkin, S.D., High entropy alloys semi-impossible regular solid solutions, Mater. Sci. Technol., 2015, no. 31, pp. 1231–1234.

  12. Ivchenko, M.V., Pushin, V.G., and Wanderka, N., Highly-entropy equiatomic AlCrFeCoNiCu alloys: Hypotheses and experimental data, Tech. Phys., 2014, vol. 59, no. 2, pp. 211–223.

    Article  CAS  Google Scholar 

  13. Qiu,  X.-W.,  Microstructure  and  properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy, J. Alloys Compd., 2013, vol. 555, pp. 246–249.

    Article  CAS  Google Scholar 

  14. Stepanova, N.D., Shaysultanova, D.G., Tikhonovsky, M.A., and Salishcheva, G.A., Tensile properties of the Cr–Fe–Ni–Mn non-equiatomic multicomponent alloys with different Cr contents, Mater. Des., 2015, vol. 87, pp. 60–65.

    Article  Google Scholar 

  15. Senkov, O.N., Scott, J.M., Senkova, S.V., Meisenkothen, F., Miracle, D.B., and Woodward, C.F., Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci., 2012, vol. 47, no. 9, pp. 4062–4074.

    Article  CAS  Google Scholar 

  16. Stepanova, N.D., Shaysultanova, D.G., Yurchenkova, N.Yu., Zherebtsova, S.V., Ladygin, A.N., Salishcheva, G.A., and Tikhonovsky, M.A., High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy, Mater. Sci. Eng., A, 2015, vol. 636, pp. 188–195.

    Article  Google Scholar 

  17. He, J.Y., Zhu, C., Zhou, D.Q., Liu, W.H., Nieh, T.G., and Lu, Z.P., Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics, 2014, vol. 55, pp. 9–14.

    Article  CAS  Google Scholar 

  18. Wang, F.J. and Zhang, Y., Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy, Mater. Sci. Eng., A, 2008, vol. 496, nos. 1–2, pp. 214–216.

    Article  Google Scholar 

  19. Fazakas, E., Zadorozhnyy, V., Varga, L., Inoue, A., Louzguine-Luzgin, D.V., Tian, F., and Vitos, L., Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys, Int. J. Refract. Met. Hard Mater., 2014, vol. 47, pp. 131–138.

    Article  CAS  Google Scholar 

  20. Ma, L.Q., Wang, L.M., Zhang, T., and Inoue, A., Bulk glass formation of Ti−Zr−Hf−Cu−M (M = Fe, Co, Ni) alloys, Mater. Trans., 2002, vol. 43, pp. 277−280.

    Article  CAS  Google Scholar 

  21. Nayan, N., Singh, G., Murty, S.V.S.N., Jha, A.K., Pant, B., and George, K.M., Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy, Intermetallics, 2014, vol. 55, pp. 145–153.

    Article  CAS  Google Scholar 

  22. Shaysultanov, D.G., Stepanov, N.D., Salishchev, G.A., and Tikhonovsky, M.A., Effect of thermal treatment on the structure and hardness of the high-entropy CoCrFeNiMnVx (x = 0.25, 0.5, 0.75, 1), Phys. Met. Metallogr., 2017, vol. 118, no. 6, pp. 579–590.

    Article  CAS  Google Scholar 

  23. Stepanov, N., Tikhonovsky, M., Yurchenko, N., Zyabkin, D., Klimova, M., and Zherebtsov, S., Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy, Intermetallics, 2015, vol. 59, pp. 8–17.

    Article  CAS  Google Scholar 

  24. Tong, C.J., Chen, M.R., Chen, S.K., Yeh, J.W., Shun, T.T., Lin, S.J., and Chang, S.Y., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 2005, vol. 36, pp. 1263–1271.

    Article  Google Scholar 

  25. Li, S., Wang, Y.P., Ren, M.X., Yang, C., and Fu, H.Z., Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy, Mater. Sci. Eng., A, 2008, vol. 498, pp. 482–486.

    Article  Google Scholar 

  26. Zhuang, Y.X., Liu, W.J., Chen, Z.Y., Xue, H.D., and He, J.C., Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys, Mater. Sci. Eng., A, 2012, vol. 556, pp. 395–399.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation as part of the Competitiveness Improvement Program of the National University of Science and Technology “MISiS” (grant no. K2A-2018-060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. R. Aripov, A. I. Bazlov, A. Yu. Churyumov, V. I. Polkin, D. V. Luzgin or S. D. Prokoshkin.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aripov, G.R., Bazlov, A.I., Churyumov, A.Y. et al. Study of the Change in the Structure and Properties of High-Entropic Alloys during Thermal and Thermomechanical Processing. Russ. J. Non-ferrous Metals 61, 413–420 (2020). https://doi.org/10.3103/S1067821220040021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220040021

Keywords:

Navigation