Skip to main content
Log in

Centrifugal Metallothermic SHS of Cast Co–Cr–Fe–Ni–Mn–(Х) Alloys

  • ENERGY SAVING AND ENVIRONMENTAL PROTECTION
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A relatively new approach to obtaining metal materials containing several principal elements in equiatomic concentrations which look promising for replacing commercially used alloys is proposed. Such materials are called high-entropy alloys (HEAs). Studies show that HEAs tend to form a simple solid-solution structure and can also contain ordered intermetallic phases. Such a method of forming metal materials can be regarded as a background for producing new HEAs with elevated performance characteristics. Most studies focus on the relationship between microstructure and measured properties; significantly less attention is paid to studying and developing new effective methods for creating HEAs. In this paper, we study the possibility of obtaining CoCrFeNiMn–(X) HEAs by centrifugal metallothermic SHS. Chemical and technological modes of modifying cast CoCrFeNiMn alloy during synthesis (in situ) by introducing alloying components into the starting exothermic compositions are tested for the first time. The microstructure and phase composition of NiCrCoFeMn alloys synthesized from mixtures containing Ti–Si–B(C) or Al are characterized. The microstructure of CoCrFeNiMn–(Ti–Si–B(C)) HEAs is found to consist of an HEA-based matrix and new structural inclusions of carbides and borides of titanium. High-Al CoCrFeNiMn–Al HEAs are represented by a composite structure containing NiAl as a basis and dispersion nanoprecipitates (~100 nm) of a Cr- and Fe-based solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Reed, R.C., The Superalloys: Fundamentals and Applications, Cambridge, New York: Cambridge Univ. Press, 2006. http://www.cambridge.org/9780521859042.

    Book  Google Scholar 

  2. Kolobov, Yu.R., Kablov, E.N., and Kozlov, E.V., Struktura i svoistva intermetallidnykh materialov s nanofaznym uprochneniem (Structure and Properties of Intermetallic Materials with Nanophase Hardening), Moscow: National Univ. of Science and Technology MISiS, 2008.

  3. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 2004, vol. 6, no. 5, pp. 299–303.

    Article  CAS  Google Scholar 

  4. Yeh, J.W., Recent progress in high-entropy alloys, Ann. Chim. Sci. Mater., 2006, vol. 31, no. 6, pp. 633–648.

    Article  CAS  Google Scholar 

  5. Gorr, B., Azim, M., Christ, H.-J., Mueller, T., Schliephake, D., and Heilmaier, M., Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, J. Alloys Compd., 2015, vol. 624, no. 9, pp. 270–278.

    Article  CAS  Google Scholar 

  6. Tong, C.J., Chen, M.R., Chen, S.K., Yeh, J.W., Shun, T.T., Lin, S.J., and Chang, S.Y., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 2005, vol. 36, pp. 1263–1271.

    Article  Google Scholar 

  7. Miracle, D.B. and Senkov, O.N., A critical review of high entropy alloys and related concepts, Acta Mater., 2017, vol. 122, pp. 448–511. https://doi.org/10.1016/j.actamat.2016.08.081

    Article  CAS  Google Scholar 

  8. Gorsse, S., Miracle, D.B., and Senkov, O.N., Mapping the world of complex concentrated alloys, Acta Mater., 2017, vol. 135, pp. 177–187. https://doi.org/10.1016/j.actamat.2017.06.027

    Article  CAS  Google Scholar 

  9. Tsai, M.-H. and Yeh, J.-W., High-entropy alloys: A critical review, Mater. Res. Lett., 2014, vol. 2, no. 3, pp. 107–123. https://doi.org/10.1080/21663831.2014.912690

    Article  CAS  Google Scholar 

  10. Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 2014, vol. 61, pp. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  CAS  Google Scholar 

  11. Tsai Ming-Hung, Physical properties of high entropy alloys, Entropy, 2013, vol. 15, no. 12, pp. 5338–5345.

    Article  Google Scholar 

  12. Yeh J.-W., Gao, M.C., Yeh, J.-W., Liaw, P.K., and Zhang, Y., Overview of high-entropy alloys, in: High-Entropy Alloys, Fundamentals and Applications, Springer, 2016, pp. 1–19.

    Google Scholar 

  13. Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, Ch., Uchic, M.D., and Tiley, J., Exploration and development of high entropy alloys for structural applications, Entropy, 2014, vol. 16, no. 1, pp. 494–525.

    Article  CAS  Google Scholar 

  14. Zhijun Wang, Sheng Guo, Qing Wang, Zhiyuan Liu, Jincheng Wang, Yong Yang, and Liu, C.T., Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi, Intermetallics, 2014, vol. 53, pp. 183–186.

    Article  CAS  Google Scholar 

  15. Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., and Liaw, P.K., Refractory high-entropy alloys, Intermetallics, 2010, vol. 18, no. 9, pp. 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014

    Article  CAS  Google Scholar 

  16. Senkov, O.N., Wilks, G.B., Scott, J.M., and Miracle, D.B., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 2011, vol. 19, no. 5, pp. 698–706. https://doi.org/10.1016/j.intermet.2011.01.004

    Article  CAS  Google Scholar 

  17. Juan, C.-Ch., Tseng, K.-K., Hsu, W.-L., Tsai, M.-H., Tsai, Ch.-W., Lin, Ch.-M., Chen, S.-K., Lin, S.-J., and Yeh, J.-W., Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys, Mater. Lett., 2016, vol. 175, pp. 284–287.

    Article  CAS  Google Scholar 

  18. Senkov, O.N. and Woodward, C.F., Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng., A, 2011, vol. 529, no. 1, pp. 311–320. https://doi.org/10.1016/j.msea.2011.09.033

    Article  CAS  Google Scholar 

  19. Senkov, O.N., Senkova, S.V., Woodward, C., and Miracle, D.B., Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis, Acta Mater., 2013, vol. 61, no. 5, pp. 1545–1557. https://doi.org/10.1016/j.actamat.2012.11.032

    Article  CAS  Google Scholar 

  20. Senkov, O.N., Senkova, S.V., Miracle, D.B., and Woodward, C., Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng., A, 2013, vol. 565, pp. 51–62. https://doi.org/10.1016/j.msea.2012.12.018

    Article  CAS  Google Scholar 

  21. Han, Z.D., Luan, H.W., Liu, X., Chen, N., Li, X.Y., Shao, Y., and Yao, K.F., Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys, Mater. Sci. Eng., A, 2018, vol. 712, no. 17, pp. 380–385. https://doi.org/10.1016/J.MSEA.2017.12.004

    Article  CAS  Google Scholar 

  22. Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Chen, R.R., Su, Y.Q., Guo, J.J., and Fu, H.Z., Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound, J. Alloys Compd., 2016, vol. 660, pp. 197–203. https://doi.org/10.1016/j.jallcom.2015.11.091

    Article  CAS  Google Scholar 

  23. Juan, C.-C., Tsai, M.-H., Tsai, C.-W., Lin, C.-M., Wang, W.-R., Yang, C.-C., Chen, S.-K., Lin, S.-J., and Yeh, J.-W., Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics, 2015, vol. 62, pp. 76–83. https://doi.org/10.1016/J.INTERMET.2015.03.013

    Article  CAS  Google Scholar 

  24. Stepanov, N.D., Yurchenko, N.Yu., Shaysultanov, D.G., Salishchev, G.A., and Tikhonovsky, M.A., Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys, Mater. Sci. Technol., 2015, vol. 31, pp. 1184–1193. https://doi.org/10.1179/1743284715Y.0000000032

    Article  CAS  Google Scholar 

  25. Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 2013, vol. 61, no. 15, pp. 5743–5755. https://doi.org/10.1016/j.actamat.2013.06.018

    Article  CAS  Google Scholar 

  26. Gludovatz, B., George, E.P., and Ritchie, R.O., Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy, JOM, 2015, vol. 67, no. 10, pp. 2262–2270. https://doi.org/10.1007/s11837-015-1589-z

    Article  CAS  Google Scholar 

  27. Otto, F., Dlouhý, A., Pradeep, K.G., Kuběnová, M., Raabe, D., Eggeler, G., and George, E.P., Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 2016, vol. 112, pp. 40–52. https://doi.org/10.1016/j.actamat.2016.04.005

    Article  CAS  Google Scholar 

  28. Zhu, G., Liu, Y., and Ye, J., Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder, Int. J. Refract. Met. Hard Mater., 2014, vol. 44, pp. 35–41. https://doi.org/10.1016/j.ijrmhm.2014.01.005

    Article  CAS  Google Scholar 

  29. Stepanov, N.D., Yurchenko, N.Y., Sokolovsky, V.S., Tikhonovsky, M.A., and Salishchev, G.A., An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility, Mater. Lett., 2015, vol. 161, pp. 136–139. https://doi.org/10.1016/j.matlet.2015.08.099

    Article  CAS  Google Scholar 

  30. Sanin, V.N., Ikornikov, D.M., Andreev, D.E., and Yukhvid, V.I., Centrifugal SHS metallurgy of nickel aluminide based eutectic alloys, Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 6, pp. 613–619. https://doi.org/10.3103/S1067821214060212

    Article  Google Scholar 

  31. Sanin, V., Andreev, D., Ikornikov, D., and Yukhvid, V., Cast intermetallic alloys and composites based on them by combined centrifugal casting - SHS process, Open J. Met., 2013, vol. 3, no. 2B, pp. 12–24. https://doi.org/10.4236/ojmetal.2013.32A2003

    Article  CAS  Google Scholar 

  32. Sanin, V.N., Yukhvid, V.I., Ikornikov, D.M, Andreev, D.E., Sachkova, N.V., and Alymov, M.I., SHS metallurgy of high-entropy transition metal alloys, 2016, vol. 470, no. 2, pp. 145–149. https://doi.org/10.1134/S001250161610002X

  33. Klimova, M., Stepanov, N., Shaysultanov, D., Chernichenko, R., Yurchenko, N., Sanin, V., and Zherebtsov, S., Microstructure and mechanical properties evolution of the Al, C-containing CoCrFeNiMn-type high-entropy alloy during cold rolling, Materials, 2018, vol. 11, no. 1, p. 53. https://doi.org/10.3390/ma11010053

    Article  CAS  Google Scholar 

  34. Kashaev, N., Ventzke, V., Stepanov, N., Shaysultanov, D., Sanin, V., and Zherebtsov, S., Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis, Intermetallics, 2018, vol. 96, pp. 63–71. https://doi.org/10.1016/j.intermet.2018.02.014

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-08-01108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Sanin, D. M. Ikornikov, O. A. Golosova, D. E. Andreev or V. I. Yukhvid.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golosova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanin, V.N., Ikornikov, D.M., Golosova, O.A. et al. Centrifugal Metallothermic SHS of Cast Co–Cr–Fe–Ni–Mn–(Х) Alloys. Russ. J. Non-ferrous Metals 61, 436–445 (2020). https://doi.org/10.3103/S1067821220040070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220040070

Keywords:

Navigation