Skip to main content
Log in

Thermal Correction for Moho Depth Estimations on West Philippine Basin: A Python Code to Calculate the Gravitational Effects of Lithospheric Cooling Under Oceanic Crust

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The aim of this work is to present an easy-to-use Python code to calculate the gravitational effect due to lateral variations in the thermal structure of oceanic lithospheric plates, necessary to appropriately isolate the contribution of the variations in crustal thickness. The model is applied to calculate the Moho depth in the West Philippine Basin, and the results are compared with seismic data. The estimations of the Moho depth taking into account the thermal correction presented a better fit with the seismic data and smoother geographical variations than the model without thermal correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amante, C., & Eakins, B. W. (2009). ETOPO1 arc-minute global relief model: procedures, data sources and analysis. https://www.ngdc.noaa.gov/mgg/global/global.html. Accessed 14 Oct 2018

  • Bai, Y., Williams, S. E., Müller, R. D., Liu, Z., & Hosseinpour, M. (2014). Mapping crustal thickness using marine gravity data: Methods and uncertainties. Geophysics, 79(2), G1–G10.

    Article  Google Scholar 

  • Braitenberg, C., & Zadro, M. (1999). Iterative 3D gravity inversion with integration of seismologic data. Bollettino di Geofisica Teorica e Applicata, 40(3), 4.

    Google Scholar 

  • Braitenberg, C., Pettenati, F., & Zadro, M. (1997). Spectral and classical methods in the evaluation of Moho undulations from gravity data: The NE Italian Alps and isostasy. Journal of Geodynamics, 23(1), 5–22.

    Article  Google Scholar 

  • Braitenberg, C., Wienecke, S., & Wang, Y. (2006). Basement structures from satellite-derived gravity field: South China Sea ridge. Journal of Geophysical Research. https://doi.org/10.1029/2005JB003938.

    Article  Google Scholar 

  • Braitenberg, C., Wienecke, S., Ebbing, J., Born, W., & Redfield, T. (2007). Joint gravity and isostatic analysis for basement studies–a novel tool. In: EGM 2007 International Workshop.

  • Chappell, A. R., & Kusznir, N. J. (2008). Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174(1), 1–13.

    Article  Google Scholar 

  • Chen, Y. J. (1992). Oceanic crustal thickness versus spreading rate. Geophysical Research Letters, 19(8), 753–756.

    Article  Google Scholar 

  • Constantino, R. R., Hackspacher, P. C., de Souza, I. A., & Costa, I. S. L. (2017). Basement structures over Rio Grande Rise from gravity inversion. Journal of South American Earth Sciences, 75, 85–91. https://doi.org/10.1016/j.jsames.2017.02.005.

    Article  Google Scholar 

  • Constantino, R. R., Hackspacher, P. C., Costa, I. S. L., Molina, E. C., & De Souza, I. A. (2019). Gravity anomalies over extinct spreading centres: A new evidence of an aborted ridge in the South Atlantic Ocean. Geophysical Journal International, 217(1), 361–374. https://doi.org/10.1093/gji/ggz019.

    Article  Google Scholar 

  • Crosby, A. G., McKenzie, D., & Sclater, J. G. (2006). The relationship between depth, age and gravity in the oceans. Geophysical Journal International, 166(2), 553–573.

    Article  Google Scholar 

  • Divins, D. L. (2003). Total sediment thickness of the World's Oceans and Marginal Seas. Boulder: NOAA National Geophysical Data Center.

    Google Scholar 

  • Fullea, J., Fernandez, M., & Zeyen, H. (2008). FA2BOUG - A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: Application to the Atlantic-Mediterranean transition zone. Computers and Geosciences, 34(12), 1665–1681.

    Article  Google Scholar 

  • Gómez-Ortiz, D., & Agarwal, B. N. (2005). 3DINVER. M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm. Computers and Geosciences, 31(4), 513–520.

    Article  Google Scholar 

  • Hilde, T. W., & Chao-Shing, L. (1984). Origin and evolution of the West Philippine Basin: A new interpretation. Tectonophysics, 102(1–4), 85–104.

    Article  Google Scholar 

  • Jaupart, C., Mareschal, J. C., & Watts, A. B. (2007). Heat flow and thermal structure of the lithosphere. Treatise on Geophysics, 6, 217–252.

    Article  Google Scholar 

  • Jonas, J., Hall, S., & Casey, J. F. (1991). Gravity anomalies over extinct spreading centers: A test of gravity models of active centers. Journal of Geophysical Research, 96(B7), 11759–11777.

    Article  Google Scholar 

  • Kaban, M. K., Schwintzer, P., Artemieva, I. M., & Mooney, W. D. (2002). Density of the continental roots: Compositional and thermal contributions. Earth and Planetary Science Letters, 209(1–2), 53–69.

    Google Scholar 

  • Kende, J., Henry, P., Bayrakci, G., Özeren, M. S., & Grall, C. (2017). Moho depth and crustal thinning in the Marmara Sea region from gravity data inversion. Journal of Geophysical Research, 122(2), 1381–1401.

    Google Scholar 

  • Kusznir, N. J., Roberts, A. M., & Alvey, A. D. (2018). Crustal structure of the conjugate Equatorial Atlantic Margins, derived by gravity anomaly inversion. London: Geological Society London, Special Publications.

    Book  Google Scholar 

  • Lambeck, K. (1972). Gravity anomalies over ocean ridges. Geophysical Journal International, 30(1), 37–53. https://doi.org/10.1111/j.1365246X.1972.tb06178.x.

    Article  Google Scholar 

  • Lewis, B. T. (1983). The process of formation of ocean crust. Science, 220(4593), 151–157. https://doi.org/10.1126/science.220.4593.151.

    Article  Google Scholar 

  • Lewis, S. D., & Hayes, D. E. (1980). The structure and evolution of the central basin fault, West Philippine Basin. The tectonic and geologic evolution of southeast asian seas and islands (pp. 77–88). Washington: American Geophysical Union.

    Chapter  Google Scholar 

  • MacLeod, S. J., Williams, S. E., Matthews, K. J., Müller, R. D., & Qin, X. (2017). A global review and digital database of large-scale extinct spreading centers. Geosphere, 13(3), 911–949.

    Article  Google Scholar 

  • Minshull, T. A., & White, R. S. (1996). Thin crust on the flanks of the slow-spreading Southwest Indian Ridge. Geophysical Journal International, 125(1), 139–148.

    Article  Google Scholar 

  • Mrozowski, C. L., Lewis, S. D., & Hayes, D. E. (1982). Complexities in the tectonic evolution of the West Philippine Basin. Tectonophysics, 82(1–2), 1–24.

    Article  Google Scholar 

  • Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry Geophysics Geosystems. https://doi.org/10.1029/2007GC001743.

    Article  Google Scholar 

  • Nishizawa, A., Kaneda, K., & Oikawa, M. (2016). Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate. Earth, Planets and Space, 68(1), 30.

    Article  Google Scholar 

  • Okino, K., & Fujioka, K. (2003). The central basin spreading center in the Philippine Sea: Structure of an extinct spreading center and implications for marginal basin formation. Journal of Geophysical Research. https://doi.org/10.1029/2001JB001095.

    Article  Google Scholar 

  • Parker, R. L. (1972). The rapid calculation of potential anomalies. Geophysical Journal International, 31(4), 447–455.

    Article  Google Scholar 

  • Paulatto, M., Watts, A. B., & Peirce, C. (2014). Potential field and bathymetric investigation of the Monowai volcanic centre, Kermadec Arc: Implications for caldera formation and volcanic evolution. Geophysical journal international, 197(3), 1484–1499.

    Article  Google Scholar 

  • Perez-Díaz, L., & Eagles, G. (2017). A new high-resolution seafloor age grid for the South Atlantic. Geochemistry Geophysics Geosystems, 181, 457–470.

    Article  Google Scholar 

  • Reid, I., & Jackson, H. R. (1981). Oceanic spreading rate and crustal thickness. Marine Geophysical Researches, 5, 165. https://doi.org/10.1007/BF00163477.

    Article  Google Scholar 

  • Russo, R. M., & Speed, E. R. (1994). Spectral analysis of gravity anomalies and the architecture of tectonic wedging, NE Venezuela and Trinidad. Tectonics, 13(3), 613–622. https://doi.org/10.1029/94TC00052.

    Article  Google Scholar 

  • Sampietro, D., Capponi, M., Triglione, D., Mansi, A. H., Marchetti, P., & Sansò, F. (2016). GTE: A new software for gravitational terrain effect computation: Theory and performances. Pure and Applied Geophysics, 173(7), 2435–2453.

    Article  Google Scholar 

  • Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213.

    Article  Google Scholar 

  • Sasaki, T., Yamazaki, T., & Ishizuka, O. (2014). A revised spreading model of the West Philippine Basin. Earth, Planets and Space, 66(1), 83.

    Article  Google Scholar 

  • Shih, T. C. (1980). Marine magnetic anomalies from the western Philippine Sea: Implications for the evolution of marginal basins. GMS, 23, 49–75.

    Google Scholar 

  • Stein, C. A. (2018). Geophysical heat flow. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.11293-X.

    Article  Google Scholar 

  • Tenzer, R., & Chen, W. (2014). Regional gravity inversion of crustal thickness beneath the Tibetan plateau. Earth Science Informatics, 7(4), 265–276.

    Article  Google Scholar 

  • Tiberi, C., Diament, M., Lyon Caen, H., & King, T. (2001). Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data. Geophysical Journal International, 145(3), 797–808.

    Article  Google Scholar 

  • Tirel, C., Gueydan, F., Tiberi, C., & Burn, J. P. (2004). Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth and Planetary Science Letters, 228(3–4), 267–280.

    Article  Google Scholar 

  • Tucholke, B. E., & Lin, J. (1994). A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research: Solid Earth, 99(B6), 11937–11958.

    Article  Google Scholar 

  • Turcotte, D. L., & Schubert, G. (2002). Geodynamics (2nd edition) (p. 472). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Uyeda, S., & Miyashiro, A. (1974). Plate tectonics and the Japanese Islands: A synthesis. Geological Society of America Bulletin, 85(7), 1159–1170.

    Article  Google Scholar 

  • Welford, J. K., & Hall, J. (2013). Lithospheric structure of the Labrador Sea from 855 constrained 3-D gravity inversion. Geophysical Journal International, 195(2), 767–784.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. (1991). Free software helps map and display data. Eos Transactions American Geophysical Union, 72(41), 441–446.

    Article  Google Scholar 

  • Yen, H. Y., Lo, Y. T., Yeh, Y. L., Hsieh, H. H., Chang, W. Y., Chen, C. H., et al. (2015). The crustal thickness of the philippine sea plate derived from gravity data. Terrestrial, Atmospheric and Oceanic Sciences, 26(3), 253.

    Article  Google Scholar 

  • Zhang, F., Lin, J., Zhang, X., Ding, W., Wang, T., & Zhu, J. (2018). Asymmetry in oceanic crustal structure of the South China Sea basin and its implications on mantle geodynamics. International Geology Review. https://doi.org/10.1080/00206814.2018.1425922.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Regina Constantino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantino, R.R., Sacek, V. Thermal Correction for Moho Depth Estimations on West Philippine Basin: A Python Code to Calculate the Gravitational Effects of Lithospheric Cooling Under Oceanic Crust. Pure Appl. Geophys. 177, 5225–5236 (2020). https://doi.org/10.1007/s00024-020-02581-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02581-2

Keywords

Navigation