Skip to main content
Log in

Identification of pollen and pistil polygalacturonases in Nicotiana tabacum and their function in interspecific stigma compatibility

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Key message

The pollen and pistil polygalacturonases in Nicotiana tabacum were identified and found to regulate pollen tube growth and interspecific compatibility.

Abstract

Polygalacturonase (PG) is one of the enzymes catalyzing the hydrolysis of pectin. This process plays important roles in the pollen and pistil. In this research, the pollen and pistil PGs in Nicotiana tabacum (NtPGs) were identified, and their expression, localization and the potential function in the pollen and interspecific stigma incompatibility were explored. The results showed that 118 NtPGs were retrieved from the genome of N. tabacum. The phylogenetic tree and RT-qPCR analysis led to the identification of 10 pollen PGs; among them, two, seven and one showed specifically higher expression levels in the early development of anthers, during pollen maturation and in mature anthers, respectively, indicating their function difference. Immunofluorescence analysis showed that PGs were located in the cytoplasm of (1) mature pollen and (2) in vitro grown pollen tubes, as well as in the wall of in vivo grown pollen tubes. Four NtPGs in clade A were identified as the pistil PGs, and the pistil PGs were not found in clade E. Significantly higher PGs expression was recorded after incompatible pollination in comparison with the compatible stigma, indicating a potential function of PGs in regulating stigma incompatibility. The influence of PGs on pollen tube growth was explored in vitro and partly in vivo, showing that high PGs activity inhibited pollen tube growth. The application of PGs on the otherwise compatible stigma resulted in pollen tube growth inhibition or failure of germination. These results further supported that increased PGs expression in incompatible stigma might be partially responsible for the interspecific stigma incompatibility in Nicotiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HAP:

Hours after pollination

IF:

Immunofluorescence

K326:

Nicotiana tabacum (L.) ‘K326’

NtPGs:

Nicotiana tabacum polygalacturonases

PMG:

Polygalacturonan hydrolase

PGs:

Polygalacturonases

PGIP:

Polygalacturonase inhibitor-like

RT-qPCR:

Reverse transcription-quantitative real-time PCR

TEM:

Transmission electron microscopy

TTS:

Transmitting tissue

References

  • Athanasiou A, Khosravi D, Tamari F, Shore JS (2003) Characterization and localization of short-specific polygalacturonase in distylous Turnera subulata (Turneraceae). Am J Bot 90:675–682

    CAS  PubMed  Google Scholar 

  • Bell J, Hicks G (1976) Transmitting tissue in the pistil of tobacco: light and electron microscopic observations. Planta 131:187–200

    CAS  PubMed  Google Scholar 

  • Brown SM, Crouch ML (1990) Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase. Plant Cell 2:263–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carvajal F, Garrido D, Jamilena M, Rosales R (2014) Cloning and characterisation of a putative pollen-specific polygalacturonase gene (CpPG1) differentially regulated during pollen development in zucchini (Cucurbita pepo L.). Plant Biol 16:457–466

    CAS  PubMed  Google Scholar 

  • Chen H, Shao H, Fan S, Juanjuan MA, Zhang D, Han M (2016) Identification and phylogenetic analysis of the polygalacturonase gene family in apple. Hortic Plant J 2:5–16

    Google Scholar 

  • Conze LL, Berlin S, Le Bail A, Kost B (2017) Transcriptome profiling of tobacco (Nicotiana tabacum) pollen and pollen tubes. BMC Genom 18:581

    Google Scholar 

  • Dearnaley JDW, Daggard GA (2001) Expression of a polygalacturonase enzyme in germinating pollen of Brassica napus. Sex Plant Reprod 13:265–271

    CAS  Google Scholar 

  • Duan W, Huang Z, Song X, Liu T, Liu H, Hou X, Li Y (2016) Comprehensive analysis of the polygalacturonase and pectin methylesterase genes in Brassica rapa shed light on their different evolutionary patterns. Sci Rep 6:25107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Guo J, Li H, Yang Z (2013) Signaling in pollen tube growth: crosstalk, feedback, and missing links. Mol Plant 6:1053–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gummadi SN, Manoj N, Kumar DS (2007) Structural and biochemical properties of pectinases. In: Julio P, Andrew PM (eds) Industrial enzymes. Springer, Berlin, pp 99–115

    Google Scholar 

  • Hadfield KA, Bennett AB (1998) Polygalacturonases: many genes in search of a function. Plant Physiol 117:337–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadfield KA, Rose JK, Yaver DS, Berka RM, Bennett AB (1998) Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. Plant Physiol 117:363–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SB, Tucker ML (1998) Genomic organization of six tomato polygalacturonases and 5′ upstream sequence identity with tap1 and win2 genes. Mol Gen Genet 258:479

    CAS  PubMed  Google Scholar 

  • Hong SB, Tucker ML (2000) Molecular characterization of a tomato polygalacturonase gene abundantly expressed in the upper third of pistils from opened and unopened flowers. Plant Cell Rep 19:680–683

    CAS  PubMed  Google Scholar 

  • Hong SB, Sexton R, Tucker ML (2000) Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol 123:869–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Cao J, Zhang AY, Zhang Y, Liu T (2009a) The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. J Exp Bot 60:301–313

    CAS  PubMed  Google Scholar 

  • Huang L, Ye Y, Zhang Y, Zhang A, Liu T, Cao J (2009b) BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation. Ann Bot 104:1339–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias-Fernández R, Matilla AJ, Rodríguez-Gacio MC, Fernández-Otero C, Torre FDL (2007) The polygalacturonase gene PdPG1 is developmentally regulated in reproductive organs of Prunus domestica L. subsp. insititia. Plant Sci 172:763–772

    Google Scholar 

  • Kalaitzis P, Koehler SM, Tucker ML (1995) Cloning of a tomato polygalacturonase expressed in abscission. Plant Mol Biol 28:647–656

    CAS  PubMed  Google Scholar 

  • Kalaitzis P, Solomos T, Tucker ML (1997) Three different polygalacturonases are expressed in tomato leaf and flower abscission, each with a different temporal expression pattern. Plant Physiol 113:1303–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy MK, Kristen U (1987) Developmental aspects of ultrastructure, histochemistry and receptivity of the stigma of Nicotiana sylvestris. Ann Bot 103:384–391

    Google Scholar 

  • Ke X, Wang H, Yang L, Zhu B, Zang Y, Yong H, Cao J, Zhu Z, Yu Y (2018) Genome-wide identification and analysis of polygalacturonase genes in Solanum lycopersicum. Int J Mol Sci 19:2290

    PubMed Central  Google Scholar 

  • Khan N, Fatima F, Haider MS, Shazadee H, Liu ZJ, Zheng T, Fang JG (2019) Genome-wide identification and expression profiling of the polygalacturonase (PG) and pectin methylesterase (PME) genes in Grapevine (Vitis vinifera L.). Int J Mol Sci 20:3180

    CAS  PubMed Central  Google Scholar 

  • Khosravi D, Joulaie R, Shore JS (2003) Immunocytochemical distribution of polygalacturonase and pectins in styles of distylous and homostylous Turneraceae. Sex Plant Reprod 16:179–190

    CAS  Google Scholar 

  • Kim J, Shiu SH, Thoma S, Li WH, Patterson SE (2006) Patterns of expansion and expression divergence in the plant polygalacturonase gene family. Genome Biol 7:R87

    PubMed  PubMed Central  Google Scholar 

  • Lehner A, Dardelle F, Soret-Morvan O, Bardor M, Lerouge P, Driouich A, Mollet JC (2010) Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. Plant Physiol 153:1563–1576

    PubMed  PubMed Central  Google Scholar 

  • Leszczuk A, Kozioł A, Szczuka E, Zdunek A (2019) Analysis of AGP contribution to the dynamic assembly and mechanical properties of cell wall during pollen tube growth. Plant Sci 281:9–18

    CAS  PubMed  Google Scholar 

  • Mahalingam R, Wang G, Knap HT (1999) Polygalacturonase and polygalacturonase inhibitor protein: gene isolation and transcription in Glycine max-Heterodera glycines interactions. Mol Plant Microbe Interact 12:490–498

    CAS  PubMed  Google Scholar 

  • Markovič O, Janeček Š (2001) Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution. Prot Eng 14:615–631

    Google Scholar 

  • Park KC, Kwon SJ, Kim NS (2010) Intron loss mediated structural dynamics and functional differentiation of the polygalacturonase gene family in land plants. Genes Genom 32:570–577

    CAS  Google Scholar 

  • Peter H, Lawrence W (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Int Plant Biol 57:79–92

    Google Scholar 

  • Rhee SY, Erin O, Poindexter PD, Somerville CR (2003) Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation. Plant Physiol 133:1170–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schacht T, Unger C, Pich A, Wydra K (2011) Endo- and exopolygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts. Plant Physiol Biochem 49:377–387

    CAS  PubMed  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genom 283:233–241

    CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  • Suarez C, Castro AJ, Rapoport HF, Rodriguez-Garcia MI (2012) Morphological, histological and ultrastructural changes in the olive pistil during flowering. Sex Plant Reprod 25:133–146

    CAS  PubMed  Google Scholar 

  • Takeshima R, Nishio T, Komatsu S, Kurauchi N, Matsui K (2019) Identification of a gene encoding polygalacturonase expressed specifically in short styles in distylous common buckwheat (Fagopyrum esculentum). Heredity 123:492–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamari F, Athanasiou A, Shore JS (2011) Pollen tube growth and inhibition in distylous and homostylous Turnera and Piriqueta (Turneraceae). Can J Bot 79(5):578

    Google Scholar 

  • Tebbutt SJ, Rogers HJ, Lonsdale DM (1994) Characterization of a tobacco gene encoding a pollen-specific polygalacturonase. Plant Mol Biol 25:283–297

    CAS  PubMed  Google Scholar 

  • Torki M, Mandaron P, Mache R, Falcone D (2000) Characterization of a ubiquitous expressed gene family encoding polygalacturonase in Arabidopsis thaliana. Gene 242:427–436

    CAS  PubMed  Google Scholar 

  • Vovk I, Simonovska B (2007) Separation of pectin methylesterases and polygalacturonases on monolithic columns. J Chromatogr B 849:337–343

    CAS  Google Scholar 

  • Wang B, Shiqiang W, Zhezhi W (2017) Genome-wide comprehensive analysis the molecular phylogenetic evaluation and tissue-specific expression of SABATH gene family in Salvia miltiorrhiza. Genes 8:365

    CAS  PubMed Central  Google Scholar 

  • Yu Y, Liang Y, Lv M, Wu J, Lu G, Cao J (2014a) Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus. Plant Physiol Biochem 74:263–275

    CAS  PubMed  Google Scholar 

  • Yu Y, Lv M, Liang Y, Xiong X, Cao J (2014b) Molecular cloning and characterization of a novel polygalacturonase gene, BcMF24, involved in pollen development of Brassica campestris ssp. chinensis. Plant Mol Biol Rep 32:476–486

    CAS  Google Scholar 

  • Zhang Q, Huang L, Liu T, Yu X, Cao J (2008) Functional analysis of a pollen-expressed polygalacturonase gene BcMF6 in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Plant Cell Rep 27:1207–1215

    CAS  PubMed  Google Scholar 

  • Zhang A, Chen Q, Li H, Lin Q, Cao J (2011) Cloning and expression of an anther-abundant polygalacturonase gene BcMF17 from Brassica campestris ssp. Chinensis. Plant Mol Biol Rep 29:943–951

    CAS  Google Scholar 

  • Zhang A, Lin Q, Li H, Yu X, Lu G, Cao J (2012) Isolation and characterization of an anther-specific polygalacturonase gene, BcMF16, in Brassica campestris ssp. chinensis. Plant Mol Biol Rep 30:330–338

    CAS  Google Scholar 

Download references

Funding

This study was supported by Grants 31560419 and 31660067 from the National Natural Science Fund in China and Grants 2017KY05 and 2018530000241034 from Yuxi China Tobacco Seed Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaokun Ou or Suiyun Chen.

Ethics declarations

Conflict of interest

Authors declare they have no conflict of interests.

Additional information

Communicated by Zhenbiao Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The expression of PGIP in the compatible and incompatible stigmas. (A, D, G) The expression of PGIP in papilla cell layer of stigma, (B, E, H) at the interface of the papilla cell and the TTS, and (C, F, I) in the style. Bars = 100 μm (TIFF 53996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Chen, Z., Wei, X. et al. Identification of pollen and pistil polygalacturonases in Nicotiana tabacum and their function in interspecific stigma compatibility. Plant Reprod 33, 173–190 (2020). https://doi.org/10.1007/s00497-020-00393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-020-00393-x

Keywords

Navigation