Skip to main content
Log in

A Hybrid Deep ResNet and Inception Model for Hyperspectral Image Classification

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

Over the past few decades, hyperspectral image (HSI) classification has garnered increasing attention from the remote sensing research community. The largest challenge faced by HSI classification is the high feature dimensions represented by the different HSI bands given the limited number of labeled samples. Deep learning and convolutional neural networks (CNNs), in particular, have been shown to be highly effective in several computer vision problems such as object detection and image classification. In terms of accuracy and computational cost, one of the best CNN architectures is the Inception model i.e., the winner of the ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2014 challenge. Another architecture that has significantly improved image recognition performance is the Residual Network (ResNet) architecture i.e., the winner of the ILSVRC 2015 challenge. Inspired by the incredible performance introduced by the Inception and ResNet architectures, we investigate the possibility of combining the core ideas of these two models into a hybrid architecture to improve the HSI classification performance. We tested this combined model on four standard HSI datasets, and it shows competitive results compared with other existing HSI classification methods. Our hybrid deep ResNet-Inception architecture obtained accuracies of 95.31% on the Pavia University dataset, 99.02% on the Pavia Centre scenes dataset, 95.33% on the Salinas dataset and 90.57% on the Indian Pines dataset.

Zusammenfassung

Ein hybrides Deep ResNet- und Inception-Modell für die hyperspektrale Bildklassifikation. In den letzten Jahrzehnten ist die Aufmerksamkeit für die Klassifizierung von Hyperspektralen Bilddaten (HSI) in der Fernerkundung gestiegen. Die größte Herausforderung ist dabei die hohe Dimension an Merkmalen, die die verschiedenen HSI-Bänder angesichts der begrenzten Anzahl an Referenzdaten darstellen. Insbesondere Deep Learning und Convolutional Neural Networks (CNNs) haben sich bei verschiedenen computergestützten Visualisierungsproblemen als äußerst effektiv erwiesen. In Bezug auf Genauigkeit und Rechenaufwand ist eine der besten CNN-Architekturen das Inception-Modell, der Gewinner der ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2014. Eine weitere Architektur, die die Bilderkennung erheblich verbessert hat, ist die Residual Network (ResNet) Architektur, der Gewinner der ILSVRC 2015. Inspiriert durch die Leistung, die durch die Inception- und ResNet-Architekturen eingeführt wurde, untersuchen wir die Möglichkeit, die Kernideen dieser beiden Modelle in einer hybriden Architektur zu kombinieren, um die HSI-Klassifikation zu verbessern. Wir testeten dieses kombinierte Modell an vier Standard HSI-Datensätzen, und es zeigt sehr gute Ergebnisse im Vergleich zu anderen bestehenden HSI-Klassifikationsmethoden. Unsere hybride tiefe ResNet-Inception-Architektur erzielte Genauigkeiten von 95,31% für den Datensatz der Pavia-Universität, 99,02% für den Datensatz Pavia-Zentrum, 95,33% für den Salinas-Datensatz und 90,57% für die Indian Pines Daten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Hamid O, Ar M, Jiang H, Deng L, Penn G, Yu D (2014) Convolutional neural networks for speech recognition. IEEE/ACM Trans Audio Speech Language Process 22(10):1533–1545

    Article  Google Scholar 

  • Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD workshop: languages for data mining and machine learning, pp 108–122

  • Carreiras JM, Jones J, Lucas RM, Shimabukuro YE (2017) Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data. Remote Sens Environ 194:16–32

    Article  Google Scholar 

  • Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Select Top Appl Earth Obser Remote Sens 7(6):2094–2107

    Article  Google Scholar 

  • Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251

    Article  Google Scholar 

  • Chicco D, Sadowski P, Baldi P (2014) Deep autoencoder neural networks for gene ontology annotation predictions. In: Proceedings of the 5th ACM conference on bioinformatics, computational biology, and health informatics, ACM, pp 533–540

  • Choi E, Schuetz A, Stewart WF, Sun J (2016) Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc 24(2):361–370

    Article  Google Scholar 

  • Chollet F, et al (2015) Keras

  • Ciregan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference on, IEEE, pp 3642–3649

  • Deng L, Yu D et al (2014) Deep learning: methods and applications. Found Trends Signal Process 7(3–4):197–387

    Article  Google Scholar 

  • Ertürk A, Iordache MD, Plaza A (2016) Sparse unmixing-based change detection for multitemporal hyperspectral images. IEEE J Select Topics Appl Earth Obser Remote Sens 9(2):708–719

    Article  Google Scholar 

  • Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. arXiv:170406857

  • Garg V, Kumar AS, Aggarwal S, Kumar V, Dhote P, Thakur PK, Nikam BR, Sambare R, Siddiqui A, Muduli PR et al (2017) Spectral similarity approach for mapping turbidity of an inland waterbody. J Hydrol

  • Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the 13th international conference on artificial intelligence and statistics, pp 249–256

  • Graves A, Jaitly N, Mohamed Ar (2013a) Hybrid speech recognition with deep bidirectional lstm. In: Automatic speech recognition and understanding (ASRU), 2013 IEEE workshop on, IEEE, pp 273–278

  • Graves A, Mohamed A, Hinton G (2013b) Speech recognition with deep recurrent neural networks. In: Acoustics, speech and signal processing (icassp), 2013 IEEE international conference on, IEEE, pp 6645–6649

  • Grupo de Inteligencia Computacional (2014) Ehu. http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  • Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens

  • Jakob S, Zimmermann R, Gloaguen R (2017) The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: Mephysto–a toolbox for pre-processing drone-borne hyperspectral data. Remote Sens 9(1):88

    Article  Google Scholar 

  • Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv:14126980

  • Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  • Kussul N, Lavreniuk M, Skakun S, Shelestov A (2017) Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci Remote Sens Lett 14(5):778–782

    Article  Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Li Y, Hu J, Zhao X, Xie W, Li J (2017a) Hyperspectral image super-resolution using deep convolutional neural network. Neurocomputing

  • Li Y, Zhang H, Shen Q (2017b) Spectral-spatial classification of hyperspectral imagery with 3d convolutional neural network. Remote Sens 9(1):67

    Article  Google Scholar 

  • Mesnil G, Dauphin Y, Yao K, Bengio Y, Deng L, Hakkani-Tur D, He X, Heck L, Tur G, Yu D et al (2015) Using recurrent neural networks for slot filling in spoken language understanding. IEEE/ACM Trans Audio Speech Language Process (TASLP) 23(3):530–539

    Article  Google Scholar 

  • Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens

  • Olmanson LG, Brezonik PL, Bauer ME (2013) Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The mississippi river and its tributaries in minnesota. Remote Sens Environ 130:254–265

    Article  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:14091556

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  • Tao C, Pan H, Li Y, Zou Z (2015) Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geosci Remote Sens Lett 12(12):2438–2442

    Article  Google Scholar 

  • Wang L, Zhang J, Liu P, Choo KKR, Huang F (2017) Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput 21(1):213–221

    Article  Google Scholar 

  • Yu S, Jia S, Xu C (2017) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98

    Article  Google Scholar 

  • Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Magn 4(2):22–40

    Article  Google Scholar 

  • Zhao W, Du S (2016) Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans Geosci Remote Sens 54(8):4544–4554

    Article  Google Scholar 

  • Zhong Sh, Liu Y, Liu Y (2011) Bilinear deep learning for image classification. In: Proceedings of the 19th ACM international conference on Multimedia, ACM, pp 343–352

  • Zhong Z, Li J, Luo Z, Chapman M (2017a) Spectral-spatial residual network for hyperspectral image classification: a 3-d deep learning framework. IEEE Trans Geosci Remote Sens

  • Zhong Z, Li J, Ma L, Jiang H, Zhao H (2017b) Deep residual networks for hyperspectral image classification. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS), Institute of electrical and electronics engineers

Download references

Acknowledgements

This research was financially supported by the Deanship of Scientific Research, University of Tabuk, Tabuk, Saudi Arabia under grant number S-0181-1439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munif Alotaibi.

Additional information

The study was performed in the different locations of the authors affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alotaibi, B., Alotaibi, M. A Hybrid Deep ResNet and Inception Model for Hyperspectral Image Classification. PFG 88, 463–476 (2020). https://doi.org/10.1007/s41064-020-00124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-020-00124-x

Keywords

Navigation