Skip to main content
Log in

New Mechanical Model of Slotting–Directional Hydraulic Fracturing and Experimental Study for Coalbed Methane Development

  • Review Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

When hydraulic fractures do not expand in the direction required by a project, it is difficult to enhance coal seam permeability effectively. Slotting–directional hydraulic fracturing (SDHF) has been proposed as a possible alternative, but there is not enough theoretical mechanism to guide the construction. Based on preliminary study of the directional mechanism of single slotted hole, we established a new slotting–directional hydraulic fracturing (NSDHF) mechanical model by using the complex function theory of elasticity, and the influence of stress interference between adjacent slotted holes and non-uniform pore water pressure was considered. We carried out true triaxial double slotted holes SDHF experiments and used large-scale nondestructive computer tomography to scan the fractured samples to ensure accurate measurement of directional distance. The measured directional distance was used to verify the NSDHF model; the maximum deviation was 5.1%. Taking the experimental data in this paper as example, the stress interference between adjacent slotted holes decreased the fracture directional distance by 20.3%, and the non-uniform pore water pressure increased the fracture directional distance by 47.6%. NSDHF mechanical model realized the quantitative description of the influence of non-uniform pore water pressure on directional distance. The contribution of non-uniform pore water pressure to directional distance accounted for more than 25% of the total directional distance; the effect of non-uniform pore water pressure on fracture direction distance was almost twice the stress interference between adjacent slotted holes. The verified NSDHF model was used to study further the influence of horizontal stress difference, azimuth of slotted hole, slotting size and fluid injection pressure on directional distance with different slotting spacing. The work discussed in this paper will contribute to promoting and apply SDHF on a large scale in low-permeability coal mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Asadi, M. B., Dejam, M., & Zendehboudi, S. (2020). Semi-analytical solution for productivity evaluation of a multi-fractured horizontal well in a bounded dual-porosity reservoir. Journal of Hydrology, 581, 124288.

    Article  Google Scholar 

  • Behnoudfar, P., Asadi, M. B., Gholilou, A., & Zendehboudi, S. (2019). A new model to conduct hydraulic fracture design in coalbed methane reservoirs by incorporating stress variations. Journal of Petroleum Science and Engineering, 174, 1208–1222.

    Article  Google Scholar 

  • Bruno, M. S., & Nakagawa, F. M. (1991). Pore pressure influence on tensile fracture propagation in sedimentary rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28(4), 261–273.

    Article  Google Scholar 

  • Cheng, Y. G., Lu, Y. Y., Ge, Z. L., Cheng, L., Zheng, J. W., & Zhang, W. F. (2018). Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing. Fuel, 218, 316–324.

    Article  Google Scholar 

  • Cheng, Y. G., Lu, Y. Y., Ge, Z. L., & Zhong, J. Y. (2017). Influence of pore water pressure gradient on guiding hydraulic fracturing in underground coal mine. Journal of Northeastern University (Natural Science), 38(7), 1043–1048.

    Google Scholar 

  • Deng, J. Q., Lin, C., Yang, Q., Liu, Y. R., Tao, Z. F., & Duan, H. F. (2016). Investigation of directional hydraulic fracturing based on true tri-axial experiment and finite element modeling. Computers and Geotechnics, 75, 28–47.

    Article  Google Scholar 

  • Detournay, E., Cheng, H. D., Roegiers, J. C., & McLennan, J. (1989). Poroelasticity considerations in In Situ stress determination by hydraulic fracturing. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 26(6), 507–513.

    Article  Google Scholar 

  • Ge, Z. L., Zhong, J. Y., Lu, Y. Y., Cheng, L., Zheng, J. W., Zhou, Z., et al. (2019). Directional distance prediction model of slotting–directional hydraulic fracturing (SDHF) for coalbed methane (CBM) extraction. Journal of Petroleum Science and Engineering, 183, 106429.

    Article  Google Scholar 

  • Gholami, A., Aghighi, M. A., & Rahman, S. S. (2017). Effect of non-uniform pore pressure fields on hydraulic fracture propagation. Journal of Petroleum Science and Engineering, 159, 889–902.

    Article  Google Scholar 

  • Guo, T. K., Liu, B. Y., Qu, Z. Q., Gong, D. G., & Lei, X. (2017). Study on initiation mechanisms of hydraulic fracture guided by vertical multi-radial boreholes. Rock Mechanics and Rock Engineering, 50, 1767–1785.

    Article  Google Scholar 

  • Guo, T. K., Qu, Z. Q., Gong, D. G., Lei, X., & Liu, M. (2016). Numerical simulation of directional propagation of hydraulic fracture guided by vertical multi-radial boreholes. Journal of Natural Gas Science and Engineering, 35, 175–188.

    Article  Google Scholar 

  • He, Q. Y., Suorineni, F. T., Ma, T. H., & Oh, J. (2017). Effect of discontinuity stress shadows on hydraulic fracture re-orientation. International Journal of Rock Mechanics and Mining Sciences, 91, 179–194.

    Article  Google Scholar 

  • Hossain, M. M., Rahman, M. K., & Rahman, S. S. (2000). Hydraulic fracture initiation and propagation: Roles of wellbore trajectory, perforation and stress regimes. Journal of Petroleum Science and Engineering, 27, 129–149.

    Article  Google Scholar 

  • Hubbert, M. K., & Willis, D. G. (1957). Mechanics of hydraulic fracturing. T Am I Min Met Eng, 210, 153–163.

    Google Scholar 

  • Li, Q., Lu, Y. Y., Ge, Z. L., Zhou, Z., Zheng, J. W., & Xiao, S. Q. (2017). A new tree-type fracturing method for stimulating coal seam gas reservoirs. Energies, 10(9).

  • Li, L. C., Tang, C. A., Tham, L. G., Yang, T. H., & Wang, S. H. (2005). Simulation of multiple hydraulic fracturing in non-uniform pore pressure field. Advanced Materials Research, 9, 163–172.

    Article  Google Scholar 

  • Liu, Y. (2012). A novel approach of fracture propagation orientation of hydraulic fracture in mine and its mechanism of improving permeability. Chongqing University.

  • Lu, Y. Y., Cheng, L., Ge, Z. L., Xia, B. W., Li, Q., & Chen, J. F. (2015). Analysis on the initial cracking parameters of cross-measure hydraulic fracture in underground coal mines. Energies, 8, 6977–6994.

    Article  Google Scholar 

  • Lu, Y. Y., Jia, Y. Z., & Tang, J. R. (2016). Mechanism of hydrofracture propagation control by non-uniform pore pressure field. Northeastern University (Natural Science), 37, 1028–1033.

    Google Scholar 

  • Lu, Y. Y., Xiao, S. Q., Ge, Z. L., Zhou, Z., Ling, Y. F., & Wang, L. (2019). Experimental study on rock-breaking performance of water jets generated by self-rotatory bit and rock failure mechanism. Powder Technology, 346, 203–216.

    Article  Google Scholar 

  • Lu, Y. Y., Yang, F., Ge, Z. L., Wang, Q., & Wang, S. Q. (2017). Influence of viscoelastic surfactant fracturing fluid on permeability of coal seams. Fuel, 194, 1–6.

    Article  Google Scholar 

  • Mao, R. B., Feng, Z. J., Liu, Z. H., & Zhao, Y. S. (2017). Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens. Journal of Natural Gas Science and Engineering, 44, 278–286.

    Article  Google Scholar 

  • Muskhelishvili, N. I. (1977). Some basic problems of the mathematical theory of elasticity. Correct and Augment (Ed.), Fundamental equations plane theory of elasticity torsion and bending (pp. 89–104). Netherlands: Springer.

  • Nasriani, H. R., & Jamiolahmady, M. (2019). Flowback cleanup mechanisms of post-hydraulic fracturing in unconventional natural gas reservoirs. Journal of Natural Gas Science and Engineering, 66, 316–342.

    Article  Google Scholar 

  • Sokolnikoff, I. S. (1956). Mathematical theory of elasticity, 2nd ed. (pp. xi-476). McGraw-Hill Book Company, Inc., New York-Toronto-London.

  • Song, C. P., Lu, Y. Y., Tang, H. M., & Jia, Y. Z. (2016). A method for hydrofracture propagation control based on non-uniform pore pressure field. Journal of Natural Gas Science and Engineering, 33, 287–295.

    Article  Google Scholar 

  • Tan, P., Jin, Y., Hou, B., Han, K., Zhou, Y. C., & Meng, S. Z. (2017). Experimental investigation on fracture initiation and non-planar propagation of hydraulic fractures in coal seams. Petroleum Exploration and Development, 44(3), 470–476.

    Article  Google Scholar 

  • Wanniarachchi, W. A. M., Ranjith, P. G., Li, J. C., & Perera, M. S. A. (2019). Numerical simulation of foam-based hydraulic fracturing to optimise perforation spacing and to investigate effect of dip angle on hydraulic fracturing. Journal of Petroleum Science and Engineering, 172, 83–96.

    Article  Google Scholar 

  • Xia, B. W., Hu, K., Lu, Y. Y., Liu, Y., & Song, C. P. (2013). Mechanism of crack-oriented of hydraulic fracture and its technique in mine. Journal of Chongqing University (Natural Science Edition), 36(9), 8–13.

    Google Scholar 

  • Xu, Z. L. (2006). Elastic mechanics (I). Higher Education Press.

  • Yaghoubi, A. (2019). Hydraulic fracturing modeling using a discrete fracture network in the Barnett Shale. International Journal of Rock Mechanics and Mining Sciences, 119, 98–108.

    Article  Google Scholar 

  • Yin, F., Xiao, Y., Han, L. H., & Wu, X. R. (2018). Quantifying the induced fracture slip and casing deformation in hydraulically fracturing shale gas wells. Journal of Natural Gas Science and Engineering, 60, 103–111.

    Article  Google Scholar 

  • Zendehboudi, S., Rezaian, N., & Lehi, A. (2018). Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review. Applied Energy, 228, 2539–2566.

    Article  Google Scholar 

  • Zeng, F. H., Cheng, X. Z., Guo, J. C., Chen, Z. X., & Xiang, J. H. (2018). Investigation of the initiation pressure and fracture geometry of fractured deviated wells. Journal of Petroleum Science and Engineering, 165, 412–427.

    Article  Google Scholar 

  • Zhang, Z. B., & Li, X. (2016). Numerical Study on the Formation of Shear Fracture Network. Energies, 9, 299.

    Article  Google Scholar 

  • Zhang, A. B., & Wang, B. L. (2016). Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials. Engineering Fracture Mechanics, 151, 11–21.

    Article  Google Scholar 

  • Zhou, Z., Lu, Y. Y., Tang, J. R., Zhang, X. W., & Li, Q. (2017). Numerical simulation of supercritical carbon dioxide jet at well bottom. Applied Thermal Engineering, 121, 210–217.

    Article  Google Scholar 

  • Zhu, H. Y., Deng, J. G., Jin, X. C., Hu, L. B., & Luo, B. (2015). Hydraulic Fracture Initiation and Propagation from Wellbore with Oriented Perforation. Rock Mechanics and Rock Engineering, 48, 585–601.

    Article  Google Scholar 

  • Zou, Q. L., Liu, H., Cheng, Z. H., Zhang, T. C., & Lin, B. Q. (2020). Effect of slot inclination angle and borehole-slot ratio on mechanical property of pre-cracked coal: Implications for ECBM recovery using hydraulic slotting. Natural Resources Research, 29, 1705–1729.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Numbers 51504046, 51774055) and the China Postdoctoral Science Foundation funded project (Grant Number 2017M620415). We thank Laura Kuhar, Ph.D., from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolong Ge.

Appendix: Total Stresses Around the Slotted Holes

Appendix: Total Stresses Around the Slotted Holes

$$\begin{aligned} \omega^{\prime}(\xi ) & = c\left( {1 - \frac{m}{{\xi^{2} }}} \right); \\ \overline{\omega (\xi ) \, } & = c\left( {\frac{{\rho^{2} }}{\xi } + \frac{m\xi }{{\mathop \rho \nolimits^{2} }}} \right); \\ \overline{{\omega^{\prime}(\xi )}} & = c\left( {1 - \frac{{m\xi^{2} }}{{\rho^{4} }}} \right); \\ \varphi_{w} (\xi ) & = - \frac{{p_{w} cm}}{\xi }; \\ \psi_{w} (\xi ) & = - \frac{{p_{w} c}}{\xi } - \frac{{p_{w} cm(1 + m\xi^{2} )}}{{(\xi^{3} - m)}} \\ \varphi_{\sigma 2} (\xi ) & = \frac{{\sigma_{1} c}}{4}\left( {\xi + \frac{{2e^{{2i\alpha_{1} }} - m}}{\xi + d}} \right) + \frac{{\sigma_{3} c}}{4}\left( {\xi + \frac{{2e^{{2i\alpha_{3} }} - m}}{\xi + d}} \right); \\ \psi_{\sigma 2} (\xi ) & = \frac{{\sigma_{1} c}}{2}\left[ { - \left( {\xi e^{{ - 2i\alpha_{1} }} + \frac{{me^{{ - 2i\alpha_{1} }} }}{\xi + d}} \right) - \frac{{1 + m^{2} - 2m\cos 2\alpha_{1} }}{\xi + d} + \frac{{(1 + m^{2} )(\cos 2\alpha_{1} - m)}}{{(\xi + d)^{3} - m(\xi + d)}} + \frac{{(m - 2\cos 2\alpha_{1} )d}}{{2(\xi + d)^{2} }}} \right] \\ & \quad + \frac{{\sigma_{3} c}}{2}\left[ { - \left( {\xi e^{{ - 2i\alpha_{3} }} + \frac{{me^{{ - 2i\alpha_{3} }} }}{\xi + d}} \right) - \frac{{1 + m^{2} - 2m\cos 2\alpha_{3} }}{\xi + d} + \frac{{(1 + m^{2} )(\cos 2\alpha_{3} - m)}}{{(\xi + d)^{3} - m(\xi + d)}} + \frac{{(m - 2\cos 2\alpha_{3} )d}}{{2(\xi + d)^{2} }}} \right] \\ \varphi_{w2}^{2} (\xi ) & = p_{w} c\left[ {\frac{1}{1/\xi + d} - \frac{md}{{(1/\xi + d)^{2} }} + \frac{{m + m^{2} (1/\xi + d)}}{{(1/\xi + d)^{2} - m}} - \frac{{m + m^{2} d^{2} }}{{d^{3} - md}} + \frac{m - 1}{d}} \right] \\ \psi_{w2}^{2} (\xi ) & = p_{w} c\left[ {\begin{array}{*{20}l} {\frac{m}{1/\xi + d} - \frac{m}{d} + \frac{{m + m^{3} }}{{2(\sqrt m + d)^{2} (\sqrt m - \xi )}} - \frac{{(\xi + m\xi^{3} )}}{{\xi^{2} - m}}} \hfill \\ {\quad \left( {\begin{array}{*{20}l} {\frac{1}{{(\xi d + 1)^{2} }} - \frac{2\xi md}{{(1/\xi + d)^{3} }} + \frac{{m + m^{2} (1/\xi + d)}}{{\xi^{2} (m - (1/\xi + d)^{2} )}}} \hfill \\ {\quad + \frac{{(2m + 2m^{2} (1/\xi + d))(1/\xi + d)^{2} }}{{\xi^{2} (m - (1/\xi + d)^{2} )^{2} }}} \hfill \\ \end{array} } \right)} \hfill \\ \end{array} } \right] \\ \varphi_{\sigma 2}^{2} (\xi ) & = \frac{{\sigma_{1} c}}{2}\left[ {\begin{array}{*{20}l} {\frac{{e^{{ - 2i\alpha_{1} }} }}{\xi } + \frac{{1 + m^{2} - 2me^{{2i\alpha_{1} }} + me^{{ - 2i\alpha_{1} }} }}{1/\xi + d} - \frac{{2md - 3e^{{2i\alpha_{1} }} d}}{{2(1/\xi + d)^{2} }} - \frac{{(1 + m^{2} )(e^{{2i\alpha_{1} }} - m)}}{{(1/\xi + d)^{3} - m(1/\xi + d)}}} \hfill \\ {\quad + \frac{{(1 + m^{2} )(e^{{2i\alpha_{1} }} - m)}}{{d^{3} - md}} + \frac{{m - 2e^{{2i\alpha_{1} }} - 2me^{{ - 2i\alpha_{1} }} - 2 - 2m^{2} + 4me^{{2i\alpha_{1} }} }}{2d}} \hfill \\ \end{array} } \right] \\ & \quad + \frac{{\sigma_{3} c}}{2}\left[ {\begin{array}{*{20}l} {\frac{{e^{{ - 2i\alpha_{3} }} }}{\xi } + \frac{{1 + m^{2} - 2me^{{2i\alpha_{3} }} + me^{{ - 2i\alpha_{3} }} }}{1/\xi + d} - \frac{{2md - 3e^{{2i\alpha_{3} }} d}}{{2(1/\xi + d)^{2} }} - \frac{{(1 + m^{2} )(e^{{2i\alpha_{3} }} - m)}}{{(1/\xi + d)^{3} - m(1/\xi + d)}}} \hfill \\ {\quad + \frac{{(1 + m^{2} )(e^{{2i\alpha_{3} }} - m)}}{{d^{3} - md}} + \frac{{m - 2e^{{2i\alpha_{3} }} - 2me^{{ - 2i\alpha_{3} }} - 2 - 2m^{2} + 4me^{{2i\alpha_{3} }} }}{2d}} \hfill \\ \end{array} } \right] \\ \psi_{\sigma 2}^{2} (\xi ) & = \frac{{\sigma_{1} c}}{2}\left[ {\begin{array}{*{20}l} {\frac{1}{2\xi } - \frac{{2e^{{2i\alpha_{1} }} - m}}{2/\xi + 2d} + \frac{{2e^{{2i\alpha_{1} }} - m}}{2d} + \frac{{(1 + m^{2} )}}{4(\sqrt m - \xi )}\left( {1 - \frac{{2e^{{2i\alpha_{1} }} - m}}{{(\sqrt m + d)^{2} }}} \right)} \hfill \\ {\quad - \frac{{\xi + m\xi^{3} }}{{\xi^{2} - m}}\left( {\begin{array}{*{20}l} { - \frac{{e^{{ - 2i\alpha_{1} }} }}{{\xi^{2} }} + \frac{{1 + m^{2} - 2me^{{2i\alpha_{1} }} + me^{{ - 2i\alpha_{1} }} }}{{(\xi d + 1)^{2} }} - \frac{{\xi (2md - 3e^{{2i\alpha_{1} }} d)}}{{(\xi d + 1)^{3} }}} \hfill \\ {\quad + \frac{{(m^{2} + 1)(m - e^{{2i\alpha_{1} }} )(3(d + 1/\xi )^{2} - m)}}{{\xi^{2} (m(d + 1/\xi ) - (d + 1/\xi )^{3} )^{2} }}} \hfill \\ \end{array} } \right)} \hfill \\ \end{array} } \right] \\ & \quad + \frac{{\sigma_{3} c}}{2}\left[ {\begin{array}{*{20}l} {\frac{1}{2\xi } - \frac{{2e^{{2i\alpha_{3} }} - m}}{2/\xi + 2d} + \frac{{2e^{{2i\alpha_{3} }} - m}}{2d} + \frac{{(1 + m^{2} )}}{4(\sqrt m - \xi )}\left( {1 - \frac{{2e^{{2i\alpha_{3} }} - m}}{{(\sqrt m + d)^{2} }}} \right)} \hfill \\ {\quad - \frac{{\xi + m\xi^{3} }}{{\xi^{2} - m}}\left( {\begin{array}{*{20}l} { - \frac{{e^{{ - 2i\alpha_{3} }} }}{{\xi^{2} }} + \frac{{1 + m^{2} - 2me^{{2i\alpha_{3} }} + me^{{ - 2i\alpha_{3} }} }}{{(\xi d + 1)^{2} }} - \frac{{\xi (2md - 3e^{{2i\alpha_{3} }} d)}}{{(\xi d + 1)^{3} }}} \hfill \\ {\quad + \frac{{(m^{2} + 1)(m - e^{{2i\alpha_{3} }} )(3(d + 1/\xi )^{2} - m)}}{{\xi^{2} (m(d + 1/\xi ) - (d + 1/\xi )^{3} )^{2} }}} \hfill \\ \end{array} } \right)} \hfill \\ \end{array} } \right]. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Ge, Z., Lu, Y. et al. New Mechanical Model of Slotting–Directional Hydraulic Fracturing and Experimental Study for Coalbed Methane Development. Nat Resour Res 30, 639–656 (2021). https://doi.org/10.1007/s11053-020-09736-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09736-x

Keywords

Navigation