Skip to main content

Advertisement

Log in

Safety and Stability of Antibody-Dye Conjugate in Optical Molecular Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The development of molecularly targeted tracers is likely to improve the accuracy of diagnostic, screening, and therapeutic tools. Despite the many therapeutic antibodies that are FDA-approved with known toxicity, only a limited number of antibody-dye conjugates have been introduced to the clinic. Thorough evaluation of the safety, stability, and pharmacokinetics of antibody conjugates in the clinical setting compared with their parental components could accelerate the clinical approval of antibodies as agents for molecular imaging. Here we investigate the safety and stability of a near-infrared fluorescent dye (IRDye800CW) conjugated panitumumab, an approved therapeutic antibody, and report on the product stability, pharmacokinetics, adverse events, and QTc interval changes in patients.

Procedures

Panitumumab-IRDye800CW was made under good manufacturing practice (GMP) conditions in a single batch on March 26, 2014, and then evaluated over 4.5 years at 0, 3, and 6 months, and then at 6-month intervals thereafter. We conducted early phase trials in head and neck, lung, pancreas, and brain cancers with panitumumab-IRDye800CW. Eighty-one patients scheduled to undergo standard-of-care surgery were infused with doses between 0.06 to 2.83 mg/kg of antibody. Patient ECGs, blood samples, and adverse events were collected over 30-day post-infusion for analysis.

Results

Eighty-one patients underwent infusion of the study drug at a range of doses. Six patients (7.4 %) experienced an adverse event that was considered potentially related to the drug. The most common event was a prolonged QTc interval which occurred in three patients (3.7 %). Panitumumab-IRDye800CW had two OOS results at 42 and 54 months while meeting all other stability testing criteria.

Conclusions

Panitumumab-IRDye800CW was safe and stable to administer over a 54-month window with a low rate of adverse events (7.4 %) which is consistent with the rate associated with panitumumab alone. This data supports re-purposing therapeutic antibodies as diagnostic imaging agents with limited preclinical toxicology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Keulen S, Nishio N, Fakurnejad S, Birkeland A, Martin BA, Lu G, Zhou Q, Chirita SU, Forouzanfar T, Colevas AD, van den Berg NS, Rosenthal EL (2019) The clinical application of fluorescence-guided surgery in head and neck cancer. J Nucl Med 60:758–763. https://doi.org/10.2967/jnumed.118.222810

    Article  PubMed  PubMed Central  Google Scholar 

  2. He K, Zhou J, Yang F, Chi C, Li H, Mao Y, Hui B, Wang K, Tian J, Wang J (2018) Near-infrared intraoperative imaging of thoracic sympathetic nerves: from preclinical study to clinical trial. Theranostics 8(2):304–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nishio N, van den Berg NS, van Keulen S et al (2019) Optical molecular imaging can differentiate metastatic from benign lymph nodes in head and neck cancer. Nat Commun 10(1):1–10

    Article  CAS  Google Scholar 

  4. Haslam A, Prasad V (2019) Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2(5):e192535–e192535

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ventola CL (2017) Cancer immunotherapy, part 3: challenges and future trends. Pharm Ther 42(8):514–521

    Google Scholar 

  6. Sambi M, Bagheri L, Szewczuk MR (2019) Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. Gupta SC, ed. J Oncol. https://doi.org/10.1155/2019/4508794

  7. Conner KP, Rock BM, Kwon GK, Balthasar JP, Abuqayyas L, Wienkers LC, Rock DA (2014) Evaluation of near infrared fluorescent labeling of monoclonal antibodies as a tool for tissue distribution. Drug Metab Dispos 42(11):1906–1913

    Article  PubMed  CAS  Google Scholar 

  8. Lu G, Fakurnejad S, Martin BA, van den Berg NS, van Keulen S, Nishio N, Zhu AJ, Chirita SU, Zhou Q, Gao RW, Kong CS, Fischbein N, Penta M, Colevas AD, Rosenthal EL (2020) Predicting therapeutic antibody delivery into human head and neck cancers. Clin Cancer Res 26:2582–2594. https://doi.org/10.1158/1078-0432.CCR-19-3717

    Article  CAS  PubMed  Google Scholar 

  9. Knutson S, Raja E, Bomgarden R, Nlend M, Chen A, Kalyanasundaram R, Desai S (2016) Development and evaluation of a fluorescent antibody-drug conjugate for molecular imaging and targeted therapy of pancreatic cancer. PLoS One 11(6):e0157762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, Oosting SF, Schröder CP, Hiltermann TJN, van der Wekken AJ, Groen HJM, Kwee TC, Elias SG, Gietema JA, Bohorquez SS, de Crespigny A, Williams SP, Mancao C, Brouwers AH, Fine BM, de Vries EGE (2018) 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24(12):1852–1858

    Article  CAS  PubMed  Google Scholar 

  11. Giusti RM, Shastri KA, Cohen MH, Keegan P, Pazdur R (2007) FDA drug approval summary: panitumumab (Vectibix). Oncologist 12(5):577–583

    Article  CAS  PubMed  Google Scholar 

  12. Bethune G, Bethune D, Ridgway N, Xu Z (2010) Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. J Thorac Dis 2(1):48–51

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalyankrishna S, Grandis JR (2006) Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol 24(17):2666–2672

    Article  CAS  PubMed  Google Scholar 

  14. Oliveira-Cunha M, Newman WG, Siriwardena AK (2011) Epidermal growth factor receptor in pancreatic cancer. Cancers. 3(2):1513–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saadeh FS, Mahfouz R, Assi HI (2018) EGFR as a clinical marker in glioblastomas and other gliomas. Int J Biol Markers 33(1):22–32

    Article  CAS  PubMed  Google Scholar 

  16. Adams KE, Ke S, Kwon S, Liang F, Fan Z, Lu Y, Hirschi K, Mawad ME, Barry MA, Sevick-Muraca EM (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12(2):024017

    Article  PubMed  CAS  Google Scholar 

  17. Marshall MV, Draney D, Sevick-Muraca EM, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 12(6):583–594

    Article  PubMed  PubMed Central  Google Scholar 

  18. ter Weele EJ, Terwisscha van Scheltinga AGT, Linssen MD et al (2016) Development, preclinical safety, formulation, and stability of clinical grade bevacizumab-800CW, a new near infrared fluorescent imaging agent for first in human use. Eur J Pharm Biopharm 104:226–234

    Article  PubMed  CAS  Google Scholar 

  19. Zinn KR, Korb M, Samuel S, Warram JM, Dion D, Killingsworth C, Fan J, Schoeb T, Strong TV, Rosenthal EL (2015) IND-directed safety and biodistribution study of intravenously injected cetuximab-IRDye800 in Cynomolgus macaques. Mol Imaging Biol 17(1):49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhattacharyya S, Patel N, Wei L, et al. (2014) Synthesis and biological evaluation of panitumumab-IRDye800 conjugate as a fluorescence imaging probe for EGFR-expressing cancers

  21. [Internet] U.S. Food and Drug Administration (2019) E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs

  22. Aldrich MB, Wang X, Hart A, Kwon S, Sampath L, Marshall MV, Sevick-Muraca EM (2011) Assessment of free dye in solutions of dual-labeled antibody conjugates for in vivo molecular imaging. Mol Imaging Biol 13(1):32–42

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gao RW, Teraphongphom N, de Boer E, Berg NS, Divi V, Kaplan MJ, Oberhelman NJ, Hong SS, Capes E, Colevas AD, Warram JM, Rosenthal EL (2018) Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Theranostics. 8(9):2488–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giusti RM, Shastri KA, Cohen MH, Keegan P, Pazdur R (2007) FDA drug approval summary: panitumumab (Vectibix™). Oncologist 12(5):577–583

    Article  CAS  PubMed  Google Scholar 

  25. Day KE, Beck LN, Deep NL, Kovar J, Zinn KR, Rosenthal EL (2013) Fluorescently labeled therapeutic antibodies for detection of microscopic melanoma. Laryngoscope 123(11):2681–2689

    Article  CAS  PubMed  Google Scholar 

  26. Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, Terwisscha van Scheltinga AGT, Jansen L, de Vries J, Lub-de Hooge MN, Schröder CP, Jorritsma-Smit A, Linssen MD, de Boer E, van der Vegt B, Nagengast WB, Elias SG, Oliveira S, Witkamp AJ, Mali WPTM, van der Wall E, van Diest PJ, de Vries EGE, Ntziachristos V, van Dam GM (2017) Tumor-specific uptake of fluorescent bevacizumab–IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res 23(11):2730–2741

    Article  CAS  PubMed  Google Scholar 

  27. Marston JC, Kennedy GD, Lapi SE, Hartman YE, Richardson MT, Modi HM, Warram JM (2019) Panitumumab-IRDye800CW for fluorescence-guided surgical resection of colorectal cancer. J Surg Res 239:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vázquez-Rey M, Lang DA (2011) Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng 108(7):1494–1508

    Article  PubMed  CAS  Google Scholar 

  29. Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8(3):E501–E507

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roberts CJ. (2014) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 0:211–217, 30

  31. Szabó Á, Szendi-Szatmári T, Ujlaky-Nagy L, Rádi I, Vereb G, Szöllősi J, Nagy P (2018) The effect of fluorophore conjugation on antibody affinity and the photophysical properties of dyes. Biophys J 114(3):688–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schobel U, Egelhaaf H-J, Fröhlich D, Brecht A, Oelkrug D, Gauglitz G (2000) Mechanisms of fluorescence quenching in donor—acceptor labeled antibody—antigen conjugates. J Fluoresc 10(2):147–147

  33. Fakih M, Vincent M (2010) Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr Oncol 17(Suppl 1):S18–S30

    PubMed  PubMed Central  Google Scholar 

  34. Amgen Inc (2009) Vectibix (panitumumab) [package insert]. Thousand Oaks, CA

  35. Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, Strong TV, Schmalbach CE, Morlandt AB, Agarwal G, Hartman YE, Carroll WR, Richman JS, Clemons LK, Nabell LM, Zinn KR (2015) Safety and tumor-specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res Off J Am Assoc Cancer Res 21(16):3658–3666

    Article  CAS  Google Scholar 

  36. Linssen MD, ter Weele EJ, Allersma DP, Lub-de Hooge MN, van Dam GM, Jorritsma-Smit A, Nagengast WB (2019) Roadmap for the development and clinical translation of optical tracers cetuximab-800CW and trastuzumab-800CW. J Nucl Med 60(3):418–423

    Article  CAS  PubMed  Google Scholar 

  37. Scheuer W, van Dam GM, Dobosz M, Schwaiger M, Ntziachristos V (2012) Drug-based optical agents: infiltrating clinics at lower risk. Sci Transl Med 4(134):134ps11

    Article  PubMed  CAS  Google Scholar 

  38. Tummers WS, Warram JM, Tipirneni KE, Fengler J, Jacobs P, Shankar L, Henderson L, Ballard B, Pfefer TJ, Pogue BW, Weichert JP, Bouvet M, Sorger J, Contag CH, Frangioni JV, Tweedle MF, Basilion JP, Gambhir SS, Rosenthal EL (2017) Regulatory aspects of optical methods and exogenous targets for cancer detection. Cancer Res 77(9):2197–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We acknowledge the support of the NCI NExT Program, NIH R01 CA190306-01, the Stanford Molecular Imaging Scholars (SMIS) program (NIH T32CA118681), and the Netherlands Organization for Scientific Research (Rubicon; 019.171LW.022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eben L. Rosenthal.

Ethics declarations

Conflict of Interest

Eben Rosenthal has equipment loans from LI-COR. The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jacqueline Pei and Georgina Juniper share first authorship

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, J., Juniper, G., van den Berg, N.S. et al. Safety and Stability of Antibody-Dye Conjugate in Optical Molecular Imaging. Mol Imaging Biol 23, 109–116 (2021). https://doi.org/10.1007/s11307-020-01536-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01536-2

Key words

Navigation