Skip to main content
Log in

Inhibitions Dominate but Stimulations and Growth Rescues Are Not Rare Among Bacterial Isolates from Grains of Forest Soil

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil is a complex environment made of multiple microhabitats in which a wide variety of microorganisms co-exist and interact to form dynamic communities. While the abiotic factors that regulate the structure of these communities are now quite well documented, our knowledge of how bacteria interact with each other within these communities is still insufficient. Literature reveals so far contradictory results and is mainly focused on antagonistic interactions. To start filling this gap, we isolated 35 different bacterial isolates from grains of soil assuming that, at this scale, these bacteria would have been likely interacting in their natural habitat. We tested pairwise interactions between all isolates from each grain and scored positive and negative interactions. We compared the effects of simultaneous versus delayed co-inoculations, allowing or not to a strain to modify first its environment. One hundred fifty-seven interactions, either positive or negative, were recorded among the 525 possible one’s. Members of the Bacillus subtilis, Pseudomonas and Streptomyces genera were responsible for most inhibitions, while positive interactions occurred between isolates of the Bacillales order and only in delayed inoculation conditions. Antagonist isolates had broad spectral abilities to acquire nutrients from organic and inorganic matter, while inhibited isolates tended to have little potentials. Despite an overall domination of antagonistic interactions (87%), a third of the isolates were able to stimulate or rescue the growth of other isolates, suggesting that cooperation between bacteria may be underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–e00016. https://doi.org/10.1128/MMBR.00063-16

    Article  PubMed  PubMed Central  Google Scholar 

  2. Uroz S, Buée M, Deveau A, Mieszkin S, Martin F (2016) Ecology of the forest microbiome: highlights of temperate and boreal ecosystems. Soil Biol Biochem 103:471–488. https://doi.org/10.1016/j.soilbio.2016.09.006

    Article  CAS  Google Scholar 

  3. Rillig MC, Muller LAH, Lehmann A (2017) Soil aggregates as massively concurrent evolutionary incubators. ISME J 11:1943–1948. https://doi.org/10.1038/ismej.2017.56

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  PubMed  Google Scholar 

  5. Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9:1–9. https://doi.org/10.1371/journal.pone.0087217

    Article  CAS  Google Scholar 

  6. Stubbendieck RM, Vargas-Bautista C, Straight PD (2016) Bacterial communities: interactions to scale. Front Microbiol 7:1–19. https://doi.org/10.3389/fmicb.2016.01234

    Article  Google Scholar 

  7. Stubbendieck RM, Straight D (2016) Multifaceted interfaces of bacterial competition. J Bacteriol 198:2145–2155. https://doi.org/10.1128/JB.00275-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. https://doi.org/10.1038/nrmicro2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG (2014) Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 38:90–118. https://doi.org/10.1111/1574-6976.12035

    Article  CAS  PubMed  Google Scholar 

  10. Grossart H, Schlinglo A, Bernhard M et al (2004) Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol Ecol 47:387–396. https://doi.org/10.1016/S0168-6496(03)00305-2

    Article  CAS  PubMed  Google Scholar 

  11. Mangano S, Michaud L, Caruso C, Brilli M, Bruni V, Fani R, Lo Giudice A (2009) Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Res Microbiol 160:27–37. https://doi.org/10.1016/j.resmic.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  12. Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated. Environ Microbiol 12:28–39. https://doi.org/10.1111/j.1462-2920.2009.02027.x

    Article  CAS  PubMed  Google Scholar 

  13. Perez-Gutierrez R-A, Lopez-Ramırez V, Islas A et al (2013) Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. ISME J 7:487–497. https://doi.org/10.1038/ismej.2012.119

    Article  CAS  PubMed  Google Scholar 

  14. Zhang P, Baranyi J, Tamplin M (2015) Interstrain interactions between bacteria isolated from vacuum-packaged refrigerated beef. Appl Environ Microbiol 81:2753–2761. https://doi.org/10.1128/AEM.03933-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davelos A, Kinkel LL, Samac D (2004) Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol 70:1051–1058

    Article  CAS  Google Scholar 

  16. Rehacek Z, Dolezilova L, Vanek Z (1960) Antagonistic properties and mutual relationships of some Actinomycetes. Folia Microbiol 5:92–99

    Article  Google Scholar 

  17. Vetsigian K, Jajoo R, Kishony R (2011) Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol 9:1–12. https://doi.org/10.1371/journal.pbio.1001184

    Article  CAS  Google Scholar 

  18. Jauri PV, Kinkel LL (2014) Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype among Streptomyces spp. FEMS Microbiol Ecol 90:264–275. https://doi.org/10.1111/1574-6941.12389

    Article  CAS  Google Scholar 

  19. Lyons NA, Kolter R (2017) Bacillus subtilis protects public goods by extending kin discrimination to closely related species. MBio 8:1–16

    Article  Google Scholar 

  20. Deng Y, Wang SY (2017) Complex carbohydrates reduce the frequency of antagonistic interactions among bacteria degrading cellulose and xylan. FEMS Microbiol Lett 364:1–7. https://doi.org/10.1093/femsle/fnx019

    Article  CAS  Google Scholar 

  21. Prasad S, Manasa P, Buddhi S, Singh SM, Shivaji S (2011) Antagonistic interaction networks among bacteria from a cold soil environment. FEMS 78:376–385. https://doi.org/10.1111/j.1574-6941.2011.01171.x

    Article  CAS  Google Scholar 

  22. Russel J, Der HLR, Madsen JS et al (2017) Antagonism correlates with metabolic similarity in diverse bacteria. Proc Natl Acad Sci 114:10684–10688. https://doi.org/10.1073/pnas.1706016114

    Article  CAS  PubMed  Google Scholar 

  23. Akroume E, Zeller B, Buée M et al (2017) Le réseau MOS, un dispositif de suivi des effets des prélèvements de biomasse sur les sols et les peuplements forestiers. Rendez-vous Tech ONF 54:9–21

    Google Scholar 

  24. Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig S (2016) Streptomyces as a plant’s best friend? FEMS Microbiol Ecol 92:1–10. https://doi.org/10.1093/femsec/fiw119

    Article  CAS  Google Scholar 

  25. Uroz S, Courty P, Pierrat JC et al (2013) Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum. Microb Ecol 66:404–415. https://doi.org/10.1007/s00248-013-0199-y

    Article  CAS  PubMed  Google Scholar 

  26. Bontemps C, Toussaint M, Revol P et al (2013) Taxonomic and functional diversity of Streptomyces in a forest soil. FEMS Microbiol Lett 342:157–167. https://doi.org/10.1111/1574-6968.12126

    Article  CAS  PubMed  Google Scholar 

  27. Van Dessel W, Van Mellaert L, Geukens N, Anné J (2003) Improved PCR-based method for the direct screening of Streptomyces transformants. J Microbiol Methods 53:401–403

    Article  Google Scholar 

  28. Rintala H, Nevalainen A, Rönkä E, Suutari M (2001) PCR primers targeting the 16S rRNA gene for the specific detection of Streptomycetes. Mol Cell Probes 15:337–347. https://doi.org/10.1006/mcpr.2001.0379

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  30. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, Gascuel O (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47:W260–W265

    Article  CAS  Google Scholar 

  31. Kieser T, Bibb M, Buttner M, et al. (2000) Practical Streptomyces genetics: a laboratory manual

  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

  33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  34. Tyc O, Song C, Dickschat JS et al (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25:280–292. https://doi.org/10.1016/j.tim.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  35. Davis K, Joseph S, Janssen P (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834

    Article  CAS  Google Scholar 

  36. Janssen P (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Environ Microbiol 72:1719–1728

    Article  CAS  Google Scholar 

  37. Colin Y, Nicolitch O, Turpault M-P, Uroz S (2017) Mineral types and tree species determine the functional and taxonomic structures of forest soil bacterial communities. Appl Environ Microbiol 83:e02684–e02616

    Article  Google Scholar 

  38. Nunan N (2017) The microbial habitat in soil: scale, heterogeneity and functional. J Plant Nutr Soil Sci 180:425–429. https://doi.org/10.1002/jpln.201700184

    Article  CAS  Google Scholar 

  39. Schlatter D, Fubuh A, Xiao K, Hernandez D, Hobbie S, Kinkel L (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb Ecol 57:413–420. https://doi.org/10.1007/s00248-008-9433-4

    Article  PubMed  Google Scholar 

  40. Petersen F, Zahner H, Metzger JW et al (1993) Germicidin, an autoregulative germination inhibitor of Streptomyces viridochromogenes NRRL B-1551. J Antibiot 46:1126–1138

    Article  CAS  Google Scholar 

  41. Čihák M, Kameník Z, Šmídová K, Bergman N, Benada O, Kofroňová O, Petříčková K, Bobek J (2017) Secondary metabolites produced during the germination of Streptomyces coelicolor. Front Microbiol 8:2495. https://doi.org/10.3389/fmicb.2017.02495

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–555

    Article  CAS  Google Scholar 

  43. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  44. Aguirre-von-wobeser E, Soberón-chávez G, Eguiarte LE et al (2014) Two-role model of an interaction network of free-living γ-Proteobacteria from an oligotrophic environment. Environ Microbiol 16:1366–1377. https://doi.org/10.1111/1462-2920.12305

    Article  PubMed  Google Scholar 

  45. Foster K, Bell T (2012) Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol 22:1845–1850

    Article  CAS  Google Scholar 

  46. Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x

    Article  CAS  PubMed  Google Scholar 

  47. Deveau A, Gross H, Palin B et al (2016) Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol Ecol 92:fiw107. https://doi.org/10.1093/femsec/fiw107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. West SA, Griffin AS, Gardner A (2007) Evolutionary explanations for cooperation. Curr Biol 17:661–672. https://doi.org/10.1016/j.cub.2007.06.004

    Article  CAS  Google Scholar 

  49. Stefanic P, Kraigher B, Anthony N et al (2015) Kin discrimination between sympatric Bacillus subtilis isolates. Proc Natl Acad Sci 112:14042–14047. https://doi.org/10.1073/pnas.1512671112

    Article  CAS  PubMed  Google Scholar 

  50. Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall NR (2018) Micro review. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol 110:863–878. https://doi.org/10.1111/mmi.14127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Anthony Gauthier (DynAMic lab) and Yoann Guignet (IAM lab) for the assistance in the laboratory procedure.

Funding

This work was supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-11-LABX 0002 01) and Agreenium (Agreenskills grant). M.G. was supported by a CJS (Contrat Jeune Scientifique) grant from INRA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aurélie Deveau or Bertrand Aigle.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 24 kb)

ESM 2

(PDF 121 kb)

ESM 3

(PDF 284 kb)

ESM 4

Supplemental Figure 3. Comparison of inhibition behaviours of isolates from grain 1 and grain 2. A. Distribution of intensities of inhibitions of isolates from grain 1 (black bars) and from grain 2 (white bars). B. Distribution of the receiver degree for inhibition of isolates from grain 1 (black bars) and from grain 2 (white bars). Differences among ditribution were tested with X2 tests (PDF 68.6 kb)

ESM 5

(XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalo, M., Deveau, A. & Aigle, B. Inhibitions Dominate but Stimulations and Growth Rescues Are Not Rare Among Bacterial Isolates from Grains of Forest Soil. Microb Ecol 80, 872–884 (2020). https://doi.org/10.1007/s00248-020-01579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01579-6

Keywords

Navigation