Skip to main content
Log in

Influence of different postures under vertical impact load on thoracolumbar burst fracture

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Clinical studies have extensively shown that burst fractures can cause severe and long-term neurological deficits. However, the mechanism of burst fracture is not clear, and the influence of different spinal postures on burst fracture is still unidentified. The study aimed at investigating the influence of different postures under vertical impact load on thoracolumbar burst fracture. A detailed nonlinear finite element model of T12-L2 segment was developed to investigate these problems. In this work, a rigid ball was used to vertically impact the finite element spinal segment, which emulated the process of burst fracture as in experimental condition. During the process, amounting to 9 different postures (normal, flexion, extension, right/left lateral bending of 8°, right/left axial rotation of 4° and 8°) were studied. Totally five failure modes were observed. Six different parameters, including vertebral height, vertebral bulge, interpedicular widening, vertebral kyphotic angle, posterior vertebral body angle, and joint facet contact force, were observed to evaluate the corresponding severity of burst fracture. Burst fracture in extension was the severest, and the loss of vertebral height in flexion was the most. The different postures in these simulations changed the morphology of intervertebral disc and facet joints force, resulting in different types of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831

    CAS  PubMed  Google Scholar 

  2. Court-Brown CM, Caesar B (2006) Epidemiology of adult fractures: a review. Injury-international Journal of the Care of the Injured 37:691–697

    Google Scholar 

  3. Meves R, Avanzi O (2006) Correlation among canal compromise, neurologic deficit, and injury severity in thoracolumbar burst fractures. Spine 31:2137–2141

    PubMed  Google Scholar 

  4. Holdsworth F (1970) Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg (Am Vol) 52:1534–1551

    CAS  Google Scholar 

  5. Jones HL, Crawley AL, Noble PC, Schoenfeld AJ, Weiner BK (2011) A novel method for the reproducible production of thoracolumbar burst fractures in human cadaveric specimens. Spine Journal 11:447–451

    PubMed  Google Scholar 

  6. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201

    CAS  PubMed  Google Scholar 

  7. Shirado O (1993) Thoracolumbar burst fractures; an experimental study on cadaveric spines and finite element method. Nihon Seikeigeka Gakkai Zasshi 67:644–654

    CAS  PubMed  Google Scholar 

  8. Cotterill PC, Kostuik JP, Wilson JA, Fernie GR, Maki BE (1987) Production of a reproducible spinal burst fracture for use in biomechanical testing. Journal of Orthopaedic Research Official Publication of the Orthopaedic Research Society 5:462–465

    CAS  PubMed  Google Scholar 

  9. Ching RP, Tencer AF, Anderson PA, Daly CH (1995) Comparison of residual stability in thoracolumbar spine fractures using neutral zone measurements. J Orthop Res 13:533–541

    CAS  PubMed  Google Scholar 

  10. Fredrickson BE, Edwards WT, Rauschning W, Bayley JC, Yuan HA (1992) Vertebral burst fractures: an experimental, morphologic, and radiographic study. Spine 17:1012–1021

    CAS  PubMed  Google Scholar 

  11. Kifune M, Panjabi MM, Arand MW (1995) Fracture pattern and instability of thoracolumbar injuries. Eur Spine J 4:98–103

    CAS  PubMed  Google Scholar 

  12. Kifune M, Panjabi MM, Liu W, Arand M, Vasavada A, Oxland T (1997) Functional morphology of the spinal canal after endplate, wedge, and burst fractures. J Spinal Disord 10:457–466

    CAS  PubMed  Google Scholar 

  13. Germaneau A, Vendeuvre T, Saget M, Doumalin P, Dupré JC, Brémand F, Hesser F, Brèque C, Maxy P, Roulaud M (2017) Development of an experimental model of burst fracture with damage characterization of the vertebral bodies under dynamic conditions. Clin Biomech 49:139–144

    CAS  Google Scholar 

  14. Isomi T, Panjabi MM, Kato Y, Wang JL (2000) Radiographic parameters for evaluating the neurological spaces in experimental thoracolumbar burst fractures. J Spinal Disord 13:404–411

    CAS  PubMed  Google Scholar 

  15. Panjabi MM, Kato Y, Hoffman H, Cholewicki J (2001) Canal and intervertebral foramen encroachments of a burst fracture: effects from the center of rotation. Spine 26:1231–1237

    CAS  PubMed  Google Scholar 

  16. Wilcox RK, Allen DJ, Hall RM, Limb D, Barton DC, Dickson RA (2004) A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 13:481–488

    CAS  Google Scholar 

  17. Wilcox RK, Boerger TO, Allen DJ, Barton DC, Limb D, Dickson RA, Hall RM (2003) A dynamic study of thoracolumbar burst fractures. Journal of Bone & Joint Surgery-american Volume 85:2184–2189

    Google Scholar 

  18. El-Rich M, Arnoux PJ, Wagnac E, Brunet C, Aubin CE (2009) Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. J Biomech 42:1252–1262

    PubMed  Google Scholar 

  19. Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ (2014) Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Medical & Biological Engineering & Computing 52:87–94

    Google Scholar 

  20. Rahimi-Gorji M, Debbaut C, Sande LVD, Willaer W, Segers P, Ceelen W (2019) Computational model of pressurized intraperitoneal chemotherapy (PIPAC) for carcinomatosis treatment. Paper presented at the 7th research seminar, UGent, Belgium

  21. Rahimi-Gorji M, Sande LVD, Debbaut C, Segers P, Willaer W, Ceelen W (2019) Computational fluid dynamics model of pressurized intraperitoneal aerosol chemotherapy : gravity matters! Paper presented at the Summer Biomechanics, Bioengineering and Biotransport Conference, Seven Springs, Pennsylvania, US,

  22. Petersilge CA, Pathria MN, Emery SE, Masaryk TJ (1995) Thoracolumbar burst fractures: evaluation with MR imaging. Radiology 194:49–54

    CAS  PubMed  Google Scholar 

  23. Cain JEJ, Dejong JT, Dinenberg AS, Stefko RM, Platenburg RC, Lauerman WC (1993) Pathomechanical analysis of thoracolumbar burst fracture reduction. A calf spine model Spine 18:1647–1654

    PubMed  Google Scholar 

  24. Langrana NA, Harten RDRD, Lin DC, Reiter MF, Lee CK (2002) Acute thoracolumbar burst fractures: a new view of loading mechanisms. Spine 27:498–508

    CAS  PubMed  Google Scholar 

  25. Fazzalari NL, Parkinson IH, Fogg QA, Suttonsmith P (2006) Antero-postero differences in cortical thickness and cortical porosity of T12 to L5 vertebral bodies. Joint Bone Spine Revue Du Rhumatisme 73:293–297

    Google Scholar 

  26. Roberts S, Mccall IW, Menage J, Haddaway MJ, Eisenstein SM (1997) Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? Eur Spine J 6:385–389

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44:372–379

    PubMed  Google Scholar 

  28. Guo L-X, Fan W (2019) Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration: a finite element sensitivity study. Medical & biological engineering & computing 57:221–229

    Google Scholar 

  29. Guo L-X, Yin J-Y (2019) Finite element analysis and design of an interspinous device using topology optimization. Medical & biological engineering & computing 57:89–98

    Google Scholar 

  30. Guo LX, Li WJ (2019) A biomechanical investigation of thoracolumbar burst fracture under vertical impact loads using finite element. Clin Biomech 29:29–36

    Google Scholar 

  31. Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke HJ (2007) Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine 39:748–755

    Google Scholar 

  32. Wagnac E, Arnoux PJ, Garo A, Elrich M, Aubin CE (2011) Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. J Biomech Eng 133:101007

    PubMed  Google Scholar 

  33. Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine (Phila Pa 1976) 11:914–927

    CAS  Google Scholar 

  34. Sharma M, Langrana NA, Rodriguez J (1995) Role of ligaments and facets in lumbar spinal stability. Spine 20:887–900

    CAS  PubMed  Google Scholar 

  35. Panjabi MM, Kifune M, Liu W, Arand M, Vasavada A, Oxland TR (1998) Graded thoracolumbar spinal injuries: development of multidirectional instability. Eur Spine J 7:332–339

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Panjabi MM, Kifune M, Wen L, Arand M, Oxland TR, Lin RM, Yoon WS, Vasavada A (1995) Dynamic canal encroachment during thoracolumbar burst fractures. J Spinal Disord 8:39–48

    CAS  PubMed  Google Scholar 

  37. Qiu TX, Tan KW, Lee VS, Teo EC (2006) Investigation of thoracolumbar T12–L1 burst fracture mechanism using finite element method. Med Eng Phys 28:656–664

    PubMed  Google Scholar 

  38. Moramarco V, Perez dPAC, Doblare M (2010) An accurate validation of a computational model of a human lumbosacral segment. J Biomech 43:334–342

    CAS  PubMed  Google Scholar 

  39. Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P (2007) Moment-rotation responses of the human lumbosacral spinal column. J Biomech 40:1975–1980

    PubMed  Google Scholar 

  40. Duma SM, Kemper AR, Mcneely DM, Brolinson PG, Matsuoka F (2006) Biomechanical response of the lumbar spine in dynamic compression. Biomed Sci Instrum 42:476–481

    PubMed  Google Scholar 

  41. Ayturk UM, Puttlitz CM (2011) Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine. Computer Methods in Biomechanics Biomedical Engineering 14:695–705

    PubMed  Google Scholar 

  42. Guo L-X, Li W-J (2019) Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment. Computer Methods in Biomechanics and Biomedical Engineering:1–12

  43. Markolf KL (1972) Deformation of the thoracolumbar intervertebral joints in response to external loads: a biomechanical study using autopsy material. J Bone Joint Surg (Am Vol) 54:511–533

    CAS  Google Scholar 

  44. Oxland TR, Lin RM, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573–580

    CAS  PubMed  Google Scholar 

  45. Sawa AGU, Crawford NR (2008) The use of surface strain data and a neural networks solution method to determine lumbar facet joint loads during in vitro spine testing. J Biomech 41:2647–2653

    PubMed  Google Scholar 

  46. Frei H, Oxland TR, Nolte LP (2002) Thoracolumbar spine mechanics contrasted under compression and shear loading. J Orthop Res 20:1333–1338

    PubMed  Google Scholar 

  47. Ochia RS, Tencer AF, Ching RP (2003) Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae. J Biomech 36:1875–1881. https://doi.org/10.1016/S0021-9290(03)00211-2

    Article  PubMed  Google Scholar 

  48. Nicola B, Nikil K, Hall RM (2014) Dynamics of interpedicular widening in spinal burst fractures: an in vitro investigation. Spine Journal Official Journal of the North American Spine Society 14:2164–2171

    Google Scholar 

  49. Whyne CM, Hu SS, Lotz JC (2003) Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine 28:652–660

    PubMed  Google Scholar 

  50. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg (Am Vol) 76:413–424

    CAS  Google Scholar 

  51. Park WM, Kim K, Kim YH (2013) Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Computers in Biology & Medicine 43:1234–1240

    Google Scholar 

  52. Vaccaro AR, Lehman JR, Hurlbert RJ, Anderson PA, Harris M, Hedlund R, Harrop J, Dvorak M, Wood K, Fehlings MG (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 30:2325–2333

    PubMed  Google Scholar 

  53. Dai LY, Jiang SD, Wang XY, Jiang LS (2007) A review of the management of thoracolumbar burst fractures. Surg Neurol 67:221–231. https://doi.org/10.1016/j.surneu.2006.08.081

    Article  PubMed  Google Scholar 

  54. Mcgrory BJ, Vanderwilde RS, Currier BL, Eismont FJ (1993) Diagnosis of subtle thoracolumbar burst fractures. A new radiographic sign Spine 18:2282–2285

  55. Salvatore G, Berton A, Giambini H, Ciuffreda M, Florio P, Longo UG, Denaro V, Thoreson A, An KN (2018) Biomechanical effects of metastasis in the osteoporotic lumbar spine: a finite element analysis. BMC Musculoskelet Disord 19:38–45

    PubMed  PubMed Central  Google Scholar 

  56. Caffaro MF, Avanzi O (2012) Can the interpedicular distance reliably assess the severity of thoracolumbar burst fractures? Spine 37:E231–E236

    PubMed  Google Scholar 

  57. Adams MA, Hutton WC (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. Journal of Bone & Joint Surgery-british 62:358–362

    CAS  Google Scholar 

  58. Lorenz M, Patwardhan A, Jr VR (1983) Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine 8:122–130

  59. Sharma M, Langrana NA, Rodriguez J (1998) Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response. J Biomech Eng 120:118–125

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51875096, 51275082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xin Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlight

• Reproducing burst fracture in different postures.

• Burst fracture in extension was the severest.

• The loss of vertebral height in flexion was the most.

• 5 fracture types defined in the clinical medicine were obtained in 9 postures.

• The severity of fracture was analyzed by quantitative method in some parameters.

Electronic supplementary material

ESM 1

(DOCX 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WJ., Guo, LX. Influence of different postures under vertical impact load on thoracolumbar burst fracture. Med Biol Eng Comput 58, 2725–2736 (2020). https://doi.org/10.1007/s11517-020-02254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02254-1

Keywords

Navigation