Skip to main content
Log in

Adsorption of dyes from water by Prunella vulgaris stem and subsequent fungal decolorization

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The residue of herbaceous Prunella vulgaris stem (PVS) was evaluated as a potential adsorbent for dye removal, followed by fungal cultivation to achieve dye degradation on solid waste. PVS was analyzed in terms of nutritional composition such as fiber, ash, protein, and fat, which not only played a role in dye adsorption but also provided solid matrix for fungal growth. Five dyes, namely, crystal violet (CV), methylene blue (MB), reactive black 5 (RB), indigo carmine (IC), and direct red 80 (DR), were tested as adsorbates but only CV and MB were effectively adsorbed. Effect of sorbent dose, contact time, dye concentration, and NaCl on adsorption was investigated individually. Langmuir model was suitable for fitting MB adsorption, while adsorption of CV adopted the Freundlich model. The adsorption capacity was calculated to be 625 mg/g for CV and 303 mg/g for MB, respectively. The adsorption process of both dyes was spontaneous and endothermic, and the adsorption followed pseudo 2nd order kinetic model and film diffusion model. The dyed PVS was finally cultivated with fungus Pycnoporus sp., wherein efficient dye decolorization was attained under solid state fermentation. As such, PVS coupled with subsequent fungal degradation might serve as novel alternative for dye effluent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Zaka, S. A. Sehgal, S. Shafique and B. H. Abbasi, J. Mol. Graph. Mod., 74, 296 (2017).

    Article  CAS  Google Scholar 

  2. H. Y. Lou, L. Jin, T. Huang, D. P. Wang, G. Y. Liang and W. D. Pan, Tetrahedron Lett., 58, 401 (2017).

    Article  CAS  Google Scholar 

  3. H. Fazal, B. H. Abbasi, N. Ahmad, M. Ali, S. S Ali, A. Khan and D. Q. Wei, Artif. Cells Nanomed. Biotechnol., 47, 2553 (2019).

    Article  CAS  Google Scholar 

  4. Y. Zhou, L. Zhang and Z. Cheng, J. Mol. Liq., 212, 739 (2015).

    Article  CAS  Google Scholar 

  5. S. Afroze and T. K. Sen, Water Air. Soil Poll., 229, 225 (2018).

    Article  Google Scholar 

  6. G. Crini, Bioresour. Technol., 97, 1061 (2006).

    Article  CAS  Google Scholar 

  7. W. Li, B. Mu and Y. Yang, Bioresour. Technol., 277, 157 (2019).

    Article  CAS  Google Scholar 

  8. J. Mo, Q. Yang, N. Zhang, W. Zhang, Y. Zheng and Z. Zhang, J. Environ. Manage., 227, 395 (2018).

    Article  CAS  Google Scholar 

  9. X. Xu, A. Geng, C. Yang, S. A. C. Carabineiro, K. Lv, J. Zhu and Z. Zhao, Ceram. Int., 46, 10740 (2020).

    Article  CAS  Google Scholar 

  10. S. Yadav, A. Asthana, R. Chakraborty, B. Jain, A. Singh, S. Carabineiro and M. Susan, Nanomaterials, 10, 170 (2020).

    Article  CAS  Google Scholar 

  11. C. Rodrigues, R. Silva, S. Carabineiro, F. J. Maldonado-Hódar and L. Madeira, Catalysts, 9, 478 (2019).

    Article  CAS  Google Scholar 

  12. M. R. R. Kooh, L. B. L. Lim, M. K. Dahri, L. H. Lim and J. M. R. Sarath Bandara, Waste Biomass Valori., 6, 547 (2015).

    Article  Google Scholar 

  13. N. S. Trivedi, R. A. Kharkar and S. A. Mandavgane, Waste Biomass Valori., 10, 1323 (2019).

    Article  CAS  Google Scholar 

  14. A. M. Rizzuti and D. J. Lancaster, Waste Biomass Valori., 4, 647 (2013).

    Article  CAS  Google Scholar 

  15. M. Perez-Ameneiro, G. Bustos, X. Vecino, L. Barbosa-Pereira, J. M. Cruz and A. B. Moldes, Water Air. Soil Poll., 226, 133 (2015).

    Article  Google Scholar 

  16. J. Liu, Z. Wang, H. Li, C. Hu, P. Raymer and Q. Huang, Bioresour. Technol., 249, 307 (2018).

    Article  CAS  Google Scholar 

  17. J. Liu, Z. Yu, X. Liao, J. Liu, F. Mao and Q. Huang, J. Clean. Prod., 127, 600 (2016).

    Article  Google Scholar 

  18. G. Koutrotsios, K. C. Mountzouris, I. Chatzipavlidis and G. I. Zervakis, Food Chem., 161, 127 (2014).

    Article  CAS  Google Scholar 

  19. J. Liu, Q. Luo and Q. Huang, J. Clean. Prod., 139, 1400 (2016).

    Article  CAS  Google Scholar 

  20. J. X. Yu, R. A. Chi, X. Z. Su, Z. Y. He, Y. F. Qi and Y. F. Zhang, J. Hazard. Mater., 177, 222 (2010).

    Article  CAS  Google Scholar 

  21. J. Liu, E. Li, X. You, C. Hu and Q. Huang, Sci. Rep., 6, 38450 (2016).

    Article  CAS  Google Scholar 

  22. S. Afroze, T. K. Sen, M. Ang and H. Nishioka, Desalin. Water Treat., 57, 5858 (2016).

    Article  CAS  Google Scholar 

  23. D. D. Sewu, P. Boakye and S. H. Woo, Bioresour. Technol., 224, 206 (2017).

    Article  CAS  Google Scholar 

  24. G. O. El-Sayed, Desalination, 272, 225 (2011).

    Article  CAS  Google Scholar 

  25. D. A. Yaseen and M. Scholz, Int. J. Environ. Sci. Te., 16, 1193 (2019).

    Article  CAS  Google Scholar 

  26. Z. Zhang, I. M. O’Hara, G. A. Kent and W. O. S. Doherty, Ind. Crop. Prod., 42, 41 (2013).

    Article  CAS  Google Scholar 

  27. X. Xu, B. Bai, H. Wang and Y. Suo, J. Phys. Chem. Sol., 87, 23 (2015).

    Article  CAS  Google Scholar 

  28. S. Li, Bioresour. Technol., 101, 2197 (2010).

    Article  CAS  Google Scholar 

  29. A. A. Mohammadi, A. Alinejad, B. Kamarehie, S. Javan, A. Ghaderpoury, M. Ahmadpour and M. Ghaderpoori, Int. J. Environ. Sci. Te., 14, 1959 (2017).

    Article  CAS  Google Scholar 

  30. M. Sarabadan, H. Bashiri and S. M. Mousavi, Korean J. Chem. Eng., 36, 1575 (2019).

    Article  CAS  Google Scholar 

  31. M. E. Mahmoud, G. M. Nabil, M. A. Khalifa, N. M. El-Mallah and H. M. Hassouba, J. Environ. Chem. Eng., 7, 103009 (2019).

    Article  CAS  Google Scholar 

  32. J. Liu, F. Chen, C. Li, L. Lu, C. Hu, Y. Wei, P. Raymer and Q. Huang, J. Clean. Prod., 208, 552 (2019).

    Article  CAS  Google Scholar 

  33. M. T. Yagub, T. K. Sen, S. Afroze and H. M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014).

    Article  CAS  Google Scholar 

  34. L. B. L. Lim, N. Priyantha, H. I. Chieng and M. K. Dahri, Desalin. Water Treat., 57, 5673 (2016).

    Article  CAS  Google Scholar 

  35. R. Ahmad, J. Hazard. Mater., 171, 767 (2009).

    Article  CAS  Google Scholar 

  36. A. Merino-Restrepo, F. Mejía-Otálvaro, C. Velásquez-Quintero and A. Hormaza-Anaguano, J. Environ. Manage., 254, 109805 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21777069), the National Key Research and Development Program of China (2016YFE0112800), the National Key Research and Development Program of the Ningxia Hui Autonomous Region (2019BFH02008), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayang Liu.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhou, J., Fan, Y. et al. Adsorption of dyes from water by Prunella vulgaris stem and subsequent fungal decolorization. Korean J. Chem. Eng. 37, 1445–1452 (2020). https://doi.org/10.1007/s11814-020-0601-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0601-7

Keywords

Navigation