Skip to main content
Log in

Filler size effect in graphite/paraffine wax composite on electromagnetic interference shielding performance

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Graphite exhibits electromagnetic wave attenuation and high electrical conductivity. In this study, we analyzed the electromagnetic interference shielding effectiveness (EMI SE) performance and electric conductivity of composites fabricated by varying the size (mean size: 6–100 µm) of graphite fillers and explained resulting attributes through the relative permittivity and geometrical characteristics of the filler. When the graphite/paraffine wax composite was fabricated using large-sized graphite (KS150), the spacing between the graphite fillers became widened, enabling electromagnetic waves to leak through the gap. The analysis results indicated that KS150 graphite exhibited an EMI SE performance of under 10 dB when the filler content was 30 wt%. However, when the content was increased to 50 wt%, the EMI SE performance improved sharply to 40 dB. In contrast, when the composite was filled with small-sized graphite (KS6), having a high ratio of surface to volume, the EMI SE performance was greater than that with the largesized graphite at low loading. The results related to the EMI shielding performance of graphite-filled composites revealed that the size of the filler greatly affects the EMI SE. The composite using KS75 showed an EMI SE performance of 53.0 dB and electrical conductivity of 2,000 S/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Dang, T. Zhou, S. Yao, J. Yuan, J. Zha, H. Song, J. Li, Q. Chen, W. Yang and J. Bai, Adv. Mater., 21, 2077 (2009).

    Article  CAS  Google Scholar 

  2. P. C. P. Watts, W. Hsu, A. Barnes and B. Chambers, Adv. Mater., 15, 600 (2003).

    Article  CAS  Google Scholar 

  3. Z. Chen, C. Xu, C. Ma, W. Ren and H. Cheng, Adv. Mater., 25, 1296 (2013).

    Article  CAS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).

    Article  CAS  Google Scholar 

  5. D. D. L. Chung, Carbon, 39, 279 (2001).

    Article  CAS  Google Scholar 

  6. N. F. Colaneri and L. W. Shacklette, IEEE Trans. Instrum. Meas., 41, 291 (1992).

    Article  Google Scholar 

  7. S. Geetha, K. K. S. Kumar, C. R. K. Rao, M. Vijayan and D. C. Trivedi, J. Appl. Polym. Sci., 112, 2073 (2009).

    Article  CAS  Google Scholar 

  8. C. W. Chu, J. Ouyang, J. Tseng and Y. Yang, Adv. Mater., 17, 1440 (2005).

    Article  CAS  Google Scholar 

  9. C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi and J. Guo, Appl. Phys. Lett., 87, 123103 (2005).

    Article  Google Scholar 

  10. J. Joo and A. Epstein, Appl. Phys. Lett., 65, 2278 (1994).

    Article  CAS  Google Scholar 

  11. J. Joo and C. Y Lee, J. Appl. Phys., 88, 513 (2000).

    Article  CAS  Google Scholar 

  12. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo and Y. Chen, Carbon, 45, 821 (2007).

    Article  CAS  Google Scholar 

  13. G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou and Y. Qin, ACS Nano, 6, 11009 (2012).

    Article  CAS  Google Scholar 

  14. Z. Liu, G. Bai, Y. Huang, Y. Huang, F. Li, Y. Ma, T. Guo, X. He, X. Lin, H. Gao and Y. Chen, J. Phys. Chem. C., 111, 13696 (2007).

    Article  CAS  Google Scholar 

  15. Y. Wang, L. Huang, Y. Liu, D. Wei, H. Zhang, H. Kajiura and Y. Li, Nano Res., 2, 865 (2009).

    Article  CAS  Google Scholar 

  16. Y. Wang, M. Jaiswal, M. Lin, S. Saha, B. Ozyilmaz and K. P. Loh, ACS Nano, 6, 1018 (2012).

    Article  CAS  Google Scholar 

  17. Y. Yang, M. C. Gupta, K. L. Dudley and R. W. Lawrence, Nano Lett., 5, 2131 (2005).

    Article  CAS  Google Scholar 

  18. S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim and B. J. Cho, Nanotechnology, 23, 455704 (2012).

    Article  Google Scholar 

  19. D. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P. Ren, J. Wang and Z. Li, Adv. Funct. Mater., 25, 559 (2015).

    Article  CAS  Google Scholar 

  20. Q. Song, F. Ye, X. Yin, W. Li, H. Li, Y. Liu, K. Li, K. Xie, X. Li, Q. Fu, L. Cheng, L. Zhang and B. Wei, Adv. Mater., 29, 1701583 (2017).

    Article  Google Scholar 

  21. Y. Zhan, J. Wang, K. Zhang, Y. Li, Y. Meng, N. Yan, W. Wei, F. Peng and H. Xia, Chem. Eng. J., 44, 184 (2018).

    Article  Google Scholar 

  22. L. C. Jia, D. X. Yan, Y. Yang, D. Zhou, C. H. Cui, E. Bianco, J. Lou, R. Vajtai, B. Li, P. M. Ajayan and Z. M. Li, Adv. Mater. Technol., 2, 1700078 (2017).

    Article  Google Scholar 

  23. M. Verma, P. Verma, S. K. Dhawan and V. Choudhary, RSC Adv., 5, 97349 (2015).

    Article  CAS  Google Scholar 

  24. S. Yang, W. Li, S. Bai, and Q. Wang, J. Mater. Chem. C, 6, 11209 (2018).

    Article  CAS  Google Scholar 

  25. G. D. Bellis, A. Tamburrano, A. Dinescu, M. L. Santarelli and M. S. Sarto, Carbon, 49, 4291 (2011).

    Article  Google Scholar 

  26. T. A. Ezquerra, M. Kulescza, C. S. Cruz and F. J. Baltá-Calleja, Adv. Mater., 2, 597 (1990).

    Article  CAS  Google Scholar 

  27. Q. Liu, B. Cao, C. Feng, W. Zhang, S. Zhu and D. Zhang, Compos. Sci. Technol., 72, 1632 (2012).

    Article  CAS  Google Scholar 

  28. G. Behnam and N. Ghalichechian, iWAT, 48 (2016).

  29. Z. Han and A. Fina, Prog. Polym. Sci., 36, 914 (2011).

    Article  CAS  Google Scholar 

  30. V. R. Tuz, D. V. Novitsky, P. L. Mladyonov, S. L. Prosvirnin and A. V. Novitskyet, JOSA B, 31, 2095 (2014).

    Article  CAS  Google Scholar 

  31. X. Chen, T. M. Grzegorczyk, B. Wu, J. Pacheco and J. A. Kong, Phys. Rev. E, 70, 016608 (2004).

    Article  Google Scholar 

  32. A. Alù, A. D. Yaghjian, R. A. Shore and M. G. Silveirinha, Phys. Rev. B, 84, 054305 (2011).

    Article  Google Scholar 

  33. A. Nicolson and G. Ross, IEEE Trans. Instrum. Meas., 19, 377 (1970).

    Article  Google Scholar 

  34. W. B. Weir, Proc IEEE, 62, 33 (1974).

    Article  Google Scholar 

  35. J. Yu, X. Huang C. Wu and P. Jiang, IEEE Trans. Dielectr. Electr. Insul, 18, 478 (2011).

    Article  CAS  Google Scholar 

  36. J. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen and C. Detrembleur, Mater. Sci. Eng. R. Rep., 74, 211 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work; was supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under the Industrial Technology Innovation Program (grant No.: 10052976).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Eun Shim or Yingjie Qian.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S., Kim, C.L., Kim, Y. et al. Filler size effect in graphite/paraffine wax composite on electromagnetic interference shielding performance. Korean J. Chem. Eng. 37, 1623–1630 (2020). https://doi.org/10.1007/s11814-020-0550-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0550-1

Keywords

Navigation