Skip to main content
Log in

Hot Corrosion Performance of Plasma-Sprayed Multiwalled Carbon Nanotube–Al2O3 Composite Coatings in a Coal-Fired Boiler at 900 °C

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study investigates the high-temperature corrosion behavior of plasma-coated boiler steel for 1000 h in a 110-MW water tube boiler, which had encountered severe corrosion and the tube failure. The coating was carried out by alumina and MWCNTs (multiwalled carbon nanotubes)-reinforced alumina composite powders. The uncoated and coated steel substrates were hung at a platen superheater at 900 °C. After the exposure, thermogravimetric analysis was carried out to evaluate the kinetics of corrosion. XRD, SEM, TEM and EDS analysis was carried out to evaluate the corrosion products at the end of the cyclic high-temperature corrosion. The present research work concludes that CNT-reinforced alumina coatings (4.0 wt.% CNT + Al2O3 coating) have decreased the corrosion rate to 30.72 mpy, which was 113.53 mpy for conventional alumina coatings and 376.96 mpy for bare T11 boiler steel in the boiler environment. This manuscript submits the failure of tube at the platen superheater, exposure conditions and the analysis of the coated and uncoated samples of the steel tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. S. Kamal, R. Jayaganthan, and S. Prakash, Hot Corrosion Studies of Detonation-Gun-Sprayed NiCrAlY + 0.4 wt.% CeO2 Coated Superalloys in Molten Salt Environment, J. Mater. Eng. Perform., 2011, 20(6), p 1068–1077

    CAS  Google Scholar 

  2. T. Sidhu, S. Prakash, and R. Agrawal, Hot Corrosion Resistance of High-Velocity Oxyfuel Sprayed Coatings on a Nickel-Base Superalloy in Molten Salt Environment, J. Therm. Spray Technol., 2006, 15(3), p 387

    CAS  Google Scholar 

  3. H. Singh, T. Sidhu, J. Karthikeyan, and S. Kalsi, Evaluation of Characteristics and Behavior of Cold Sprayed Ni-20Cr Coating at Elevated Temperature in Waste Incinerator Plant, Surf. Coat. Technol., 2015, 261, p 375–384

    CAS  Google Scholar 

  4. A. López, M. Proy, V. Utrilla, E. Otero, and J. Rams, High-Temperature Corrosion Behavior of Ni-50Cr Coating Deposited by High Velocity Oxygen–Fuel Technique on Low Alloy Ferritic Steel, Mater. Des., 2014, 59, p 94–102

    Google Scholar 

  5. K. Goyal, H. Singh, and R. Bhatia, Current Status of Thermal Spray Coatings for High Temperature Corrosion Resistance of Boiler Steel, J. Mater. Metall. Eng., 2016, 6(1), p 29–35

    CAS  Google Scholar 

  6. K. Goyal and R. Goyal, Performance of Cr 3 C 2-25 (Ni-20Cr) and Ni-20Cr Coatings on T91 Boiler Tube Steel in Simulated Boiler Environment at 900°C, Chem. Mater. Eng., 2016, 4(4), p 57–64

    Google Scholar 

  7. X. Zhang, X. Zhang, X. Jie, X. Jie, L. Zhang, L. Zhang et al., Improving the high-temperature oxidation resistance of H13 steel by laser cladding with a WC/Co-Cr alloy coating, Anti-Corros. Methods Mater., 2016, 63(3), p 171–176

    CAS  Google Scholar 

  8. V. P. S. Sidhu, K. Goyal, and R. Goyal, Corrosion Behaviour of HVOF Sprayed Coatings on ASME SA213 T22 Boiler Steel in an Actual Boiler Environment. in Advanced Engineering Forum, 2017.

  9. K. Katiki, S. Yadlapati, and S.N.S. Chidepudi, Comparative High Temperature Corrosion Studies on Zirconium Dioxide Coated Inconel 625 in Air and Molten Salt Environment, Int. J. ChemTech Res., 2014, 6(11), p 4579–45845

    Google Scholar 

  10. P. Fauchais, Understanding Plasma Spraying, J. Phys. D Appl. Phys., 2004, 37(9), p R86

    CAS  Google Scholar 

  11. B.S. Sidhu, D. Puri, and S. Prakash, Mechanical and Metallurgical Properties of Plasma Sprayed and Laser Remelted Ni-20Cr and Stellite-6 Coatings, J. Mater. Process. Technol., 2005, 159(3), p 347–355

    CAS  Google Scholar 

  12. A.N. Khan and J. Lu, Thermal Cyclic Behavior of Air Plasma Sprayed Thermal Barrier Coatings Sprayed on Stainless Steel Substrates, Surf. Coat. Technol., 2007, 201(8), p 4653–4658

    CAS  Google Scholar 

  13. L. Du, W. Zhang, W. Liu, and J. Zhang, Preparation and Characterization of Plasma Sprayed Ni 3 Al-hBN Composite Coating, Surf. Coat. Technol., 2010, 205(7), p 2419–2424

    CAS  Google Scholar 

  14. K. Goyal, Experimental Investigations of Mechanical Properties and Slurry Erosion Behaviour of High Velocity Oxy Fuel and Plasma Sprayed Cr2O3-50% Al2O3 Coatings on CA6NM Turbine Steel Under Hydro Accelerated Conditions, Tribol. Mater. Surf. Interfaces, 2018, 12, p 1–10

    Google Scholar 

  15. N. Hegazy, M. Shoeib, S. Abdel-Samea, and H. Abdel-Kader, ‘Effect of plasma sprayed alumina coating on corrosion resistance’. in Proceedings of the 13th International Conference on ‘Aerospace sciences and aviation technology’, Cairo, Egypt, 2009, pp. 1–10.

  16. E. Celik, I. Ozdemir, E. Avci, and Y. Tsunekawa, Corrosion Behaviour of Plasma Sprayed Coatings, Surf. Coat. Technol., 2005, 193(1), p 297–302

    CAS  Google Scholar 

  17. N. Malatji, A.P.I. Popoola, O.S.I. Fayomi, and C.A. Loto, Multifaceted Incorporation of Zn-Al2O3/Cr2O3/SiO2 Nanocomposite Coatings: Anti-Corrosion, Tribological, and Thermal Stability, Int. J. Adv. Manuf. Technol., 2016, 82, p 1335–1341

    Google Scholar 

  18. S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of Image Analysis for Characterization of Porosity in Thermal Spray Coatings and Correlation with Small Angle Neutron Scattering, Surf. Coat. Technol., 2004, 187(1), p 6–16

    CAS  Google Scholar 

  19. S. Deshpande, S. Sampath, and H. Zhang, Mechanisms of Oxidation and its Role in Microstructural Evolution of Metallic Thermal Spray Coatings—Case study for Ni-Al, Surf. Coat. Technol., 2006, 200(18), p 5395–5406

    CAS  Google Scholar 

  20. S. Kamal, R. Jayaganthan, and S. Prakash, Evaluation of Cyclic Hot Corrosion Behaviour of Detonation Gun Sprayed Cr3C2-25% NiCr Coatings on Nickel-and Iron-Based Superalloys, Surf. Coat. Technol., 2009, 203(8), p 1004–1013

    CAS  Google Scholar 

  21. M.K. Singla, H. Singh, and V. Chawla, Thermal Sprayed CNT Reinforced Nanocomposite Coatings–A Review, J. Miner. Mater. Charact. Eng., 2011, 10(8), p 717–726

    Google Scholar 

  22. B. Yu and M. Meyyappan, Nanotechnology: Role in Emerging Nanoelectronics, Solid-State Electron., 2006, 50(4), p 536–544

    CAS  Google Scholar 

  23. K. Liew, X. He, and C. Wong, On the Study of Elastic and Plastic Properties of Multi-Walled Carbon Nanotubes Under Axial Tension Using Molecular Dynamics Simulation, Acta Mater., 2004, 52(9), p 2521–2527

    CAS  Google Scholar 

  24. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, 2000, 287(5453), p 637–640

    CAS  Google Scholar 

  25. A. Krishnan, E. Dujardin, T. Ebbesen, P. Yianilos, and M. Treacy, Young’s Modulus of Single-Walled Nanotubes, Phys. Rev. B, 1998, 58(20), p 14013

    CAS  Google Scholar 

  26. A.A. Ali, A. Eldesouky, and S.H. Zoalfakar, Mechanical and Tribological Properties of Hot-Pressed Electrospun MWCNTs/Carbon Nanofibril Composite Fabrics, Int. J. Adv. Manuf. Technol., 2014, 74(5–8), p 983–993

    Google Scholar 

  27. C.I. Park, M. Mostofa, M. Mahmoodi, and S.S. Park, Micromechanical Scribing and Indentation Behavior of Injection-Molded Polymeric Carbon Nanotube (CNT) Nanocomposites, Int. J. Adv. Manuf. Technol., 2013, 68(1–4), p 391–405

    Google Scholar 

  28. X. Chen, C. Chen, H. Xiao, F. Cheng, G. Zhang, and G. Yi, Corrosion Behavior of Carbon Nanotubes–Ni Composite Coating, Surf. Coat. Technol., 2005, 191(2), p 351–356

    CAS  Google Scholar 

  29. B. Praveen, T. Venkatesha, Y.A. Naik, and K. Prashantha, Corrosion Studies of Carbon Nanotubes–Zn Composite Coating, Surf. Coat. Technol., 2007, 201(12), p 5836–5842

    CAS  Google Scholar 

  30. A.K. Keshri, V. Singh, J. Huang, S. Seal, W. Choi, and A. Agarwal, Intermediate Temperature Tribological Behavior of Carbon Nanotube Reinforced Plasma Sprayed Aluminum Oxide Coating, Surf. Coat. Technol., 2010, 204(11), p 1847–1855

    CAS  Google Scholar 

  31. I. Ahmad, M. Unwin, H. Cao, H. Chen, H. Zhao, A. Kennedy et al., Multi-walled Carbon Nanotubes Reinforced Al2O3 Nanocomposites: Mechanical Properties and Interfacial Investigations, Compos. Sci. Technol., 2010, 70(8), p 1199–1206

    CAS  Google Scholar 

  32. K. Balani, S.P. Harimkar, A. Keshri, Y. Chen, N.B. Dahotre, and A. Agarwal, Multiscale Wear of Plasma-Sprayed Carbon-Nanotube-Reinforced Aluminum Oxide Nanocomposite Coating, Acta Mater., 2008, 56(20), p 5984–5994

    CAS  Google Scholar 

  33. C.F. Gutierrez-Gonzalez, A. Smirnov, A. Centeno, A. Fernández, B. Alonso, V.G. Rocha et al., Wear Behavior of Graphene/Alumina Composite, Ceram. Int., 2015, 41(6), p 7434–7438

    CAS  Google Scholar 

  34. W. Guo and H.-Y. Tam, Effects of Carbon Nanotubes on Wear of WC/Co Micropunches, Int. J. Adv. Manuf. Technol., 2014, 72(1–4), p 269–275

    Google Scholar 

  35. R. Goyal, B.S. Sidhu, and V. Chawla, Characterization of Plasma-Sprayed Carbon Nanotube (CNT) -Reinforced Alumina Coatings on ASME-SA213-T11 Boiler Tube Steel, Int. J. Adv. Manuf. Technol., 2017, 92, p 3225–3235

    Google Scholar 

  36. K. Weulersse-Mouturat, G. Moulin, P. Billard, and G. Pierotti, VII Land-Based Gas Turbines, Diesel Engines, Boilers, Incinerators, Burners, Coal Gasification, Aerospace Industry-High Temperature Corrosion of Superheater Tubes in Waste Incinerators and. in Materials Science Forum, 2004, pp. 973–980.

  37. T. Sidhu, S. Prakash, and R. Agrawal, Studies of the Metallurgical and Mechanical Properties of High Velocity Oxy-Fuel Sprayed Stellite-6 Coatings on Ni-and Fe-Based Superalloys, Surf. Coat. Technol., 2006, 201(1), p 273–281

    CAS  Google Scholar 

  38. T. Sidhu, S. Prakash, and R. Agrawal, Hot Corrosion Studies of HVOF Sprayed Cr3C2-NiCr and Ni-20Cr Coatings on Nickel-Based Superalloy at 900 °C, Surf. Coat. Technol., 2006, 201(3), p 792–800

    CAS  Google Scholar 

  39. K. Weulersse, G. Moulin, P. Billard, and G. Pierotti, High Temperature Corrosion of Superheater Tubes in Waste Incinerators and Coal-Fired Plants. in Materials Science Forum, 2004, pp. 973–980.

  40. S. Srivastava, K. Godiwalla, and M. Banerjee, Fuel Ash Corrosion of Boiler and Superheater Tubes, J. Mater. Sci., 1997, 32(4), p 835–849

    CAS  Google Scholar 

  41. H. Crossley, A. Poll, and F. Sweett, The Reduction of Sulphur Trioxide by Constituents of Boiler Flue Dust, J. Inst. Fuel, 1948, 21, p 207–209

    CAS  Google Scholar 

  42. Y. Longa-Nava, Y. Zhang, M. Takemoto, and R. Rapp, Hot Corrosion of Nickel–Chromium and Nickel–Chromium–Aluminum Thermal-Spray Coatings by Sodium Sulfate-Sodium Metavanadate Salt, Corrosion, 1996, 52(9), p 680–689

    CAS  Google Scholar 

  43. H. Nickel, W. Quadakkers, and L. Singheiser, Analysis of Corrosion Layers on Protective Coatings and High Temperature Materials in Simulated Service Environments of Modern Power Plants using SNMS, SIMS, SEM, TEM, RBS and X-ray Diffraction Studies, Anal. Bioanal. Chem., 2002, 374(4), p 581–587

    CAS  Google Scholar 

  44. S. Prakash, S. Singh, B. Sidhu, and A. Madeshia, Tube Failures in Coal Fired Boilers. in Proceedings of the National Seminar on Advances in Material and Processing, 2001, pp. 9–10.

  45. S. Srikanth, B. Ravikumar, S.K. Das, K. Gopalakrishna, K. Nandakumar, and P. Vijayan, Analysis of Failures in Boiler Tubes due to Fireside Corrosion in a Waste Heat Recovery Boiler, Eng. Fail. Anal., 2003, 10(1), p 59–66

    CAS  Google Scholar 

  46. R. John, Slag, Gas, and Deposit Thermochemistry in a Coal Gasifier, J. Electrochem. Soc., 1986, 133(1), p 205–211

    CAS  Google Scholar 

  47. B. M. Institute, A. R. C. o. Corrosion, and D. f. C. Gases, A Review of Available Information on Corrosion and Deposits in Coal and Oil-fired Boilers and Gas Turbines: Report of ASME Research Committee on Corrosion and Deposits from Combustion Gases. American Society of Mechanical Engineers, 1959.

  48. B. Wang, Erosion-Corrosion of Thermal Sprayed Coatings in FBC Boilers, Wear, 1996, 199(1), p 24–32

    CAS  Google Scholar 

  49. B.S. Sidhu and S. Prakash, Evaluation of the Corrosion Behaviour of Plasma-Sprayed Ni3Al Coatings on Steel in Oxidation and Molten Salt Environments at 900 °C, Surf. Coat. Technol., 2003, 166(1), p 89–100

    CAS  Google Scholar 

  50. S.R. Kiahosseini and A. Aminian, Mechanical and Corrosion Performance of Multilayer Ceramic Coatings Deposited on an Austenitic Stainless Steel Using Plasma Spray, Bull. Mater. Sci., 2019, 42(160), p 1–7

    CAS  Google Scholar 

  51. A.K. Shirazi and S.R. Kiahosseini, Hot Corrosion of the Ceramic Composite Coating Ni3Al-Al2O3-Al2O3/MgO Plasma Sprayed on 316L Stainless Steel, Int. J. Mater. Res., 2017, 108(8), p 675–680

    CAS  Google Scholar 

  52. A. Mangla, V. Chawla, and G. Singh, Comparative Hot Corrosion Behavior of HVOF and Plasma Sprayed Ni20Cr Coated T-22 Steel in Actual Coal Fired Boiler Environment, Global J. Eng. Sci. Res., 2017, 4(11), p 6–19

    Google Scholar 

  53. R. Goyal, B. Sidhu, and V. Chawla, Improving the High-Temperature Oxidation Resistance of ASME-SA213-T11 Boiler Tube Steel by Plasma Spraying with CNT-Reinforced Alumina Coatings, Anti-Corros. Methods Mater., 2018, 65(2), p 217–223

    CAS  Google Scholar 

  54. G. Yang, C. Li, C. Li, K. Kondoh, and A. Ohmori, Improvement of Adhesion and Cohesion in Plasma-Sprayed Ceramic Coatings by Heterogeneous Modification of Nonbonded Lamellar Interface Using High Strength Adhesive Infiltration, J. Therm. Spray Technol., 2013, 22, p 36–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Goyal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, R., Sidhu, B.S. & Chawla, V. Hot Corrosion Performance of Plasma-Sprayed Multiwalled Carbon Nanotube–Al2O3 Composite Coatings in a Coal-Fired Boiler at 900 °C. J. of Materi Eng and Perform 29, 5738–5749 (2020). https://doi.org/10.1007/s11665-020-05070-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05070-8

Keywords

Navigation