Skip to main content
Log in

Effects of Pre-Deformation and Heat Treatment on the Microstructure and Mechanical Properties of Cu-2.5Be Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigated the effects of pre-deformation reduction and subsequent heat treatment on the microstructure and mechanical properties of Cu-2.5Be alloy. Twin formation mechanism and the strengthening contribution of boundaries and β particles were analyzed and discussed, and the results indicate that the following relative oriented relationship existed between the β and the surrounding α(Cu): (\(11\bar{1}\))α∥(110)β and [011]α∥[001]β. Meanwhile, the main formation mechanism of annealing twins in Cu-2.5Be alloy is “growth accidents.” Pre-deformation can significantly increase the yield strength of Cu-2.5Be alloy while maintaining good plasticity. The analysis of strengthening contributions indicated that the presence of twins and grain boundaries significantly improved the strength and ductility of the Cu-2.5Be alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Yagmur, O. Duygulu, and B. Aydemir, Investigation of Metastable γ′ Precipitate Using HRTEM In Aged Cu–Be Alloy, Mater. Sci. Eng., A, 2011, 528, p 4147–4151

    Article  Google Scholar 

  2. Y.J. Zhou, K.X. Song, J.D. Xing, and Y.M. Zhang, Precipitation Behavior and Properties of Aged Cu-0.23Be-0.84Co Alloy, J. Alloys Compd., 2016, 658, p 920–930

    Article  CAS  Google Scholar 

  3. R. Monzen, S. Okawara, and C. Watanabe, Stress-Assisted Nucleation and Growth of γ″ and γ′ Precipitates in a Cu–1.2wt.% Be–0.1wt.% Co Alloy Aged at 320 °C, Philos. Mag., 2012, 92, p 1826–1843

    Article  CAS  Google Scholar 

  4. B. Wang, E. Wu, Y. Wang, L. Xiong, and S. Liu, Activation Treatment Effects on Characteristics of BeO Layer and Secondary Electron Emission Properties of an Activated Cu–Be Alloy, Appl. Surf. Sci., 2015, 355, p 19–25

    Article  CAS  Google Scholar 

  5. D. Zhu, C. Liu, Y. Liu, T. Han, Y. Gao, and S. Jiang, Evolution of the Texture, Mechanical Properties, and Microstructure of Cu-2.7Be Alloys During Hot Cross-Rolling, Appl. Phys. A, 2015, 120, p 1605–1613

    Article  CAS  Google Scholar 

  6. D.B. Zhu, C.M. Liu, T. Han, Y.D. Liu, and H.P. Xie, Effects of Secondary β and γ Phases on the Work Function Properties of Cu–Be Alloys, Appl. Phys. A, 2015, 120, p 1023–1026

    Article  CAS  Google Scholar 

  7. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng., A, 1997, 238, p 219–274

    Article  Google Scholar 

  8. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, 2004

    Google Scholar 

  9. C.L. Daibo Zhu, Haijun Yu, and Tan Han, Effects of Changing Hot Rolling Direction on Microstructure, Texture and Mechanical Properties of Cu-2.7Be Sheets, J. Mater. Eng. Perform., 2018, 27, p 3532–3543

    Article  Google Scholar 

  10. Y. Guan, C. Liu, Y. Gao, D. Zhu, T. Han, and S. Jiang, Effect of Annealing on Microstructure and Tensile Properties of Cold-rolled Cu-2.7Be Sheets, Mater. Char., 2017, 129, p 156–162

    Article  CAS  Google Scholar 

  11. N. Bozzolo, N. Souaï, and R.E. Logé, Evolution of Microstructure and Twin Density During Thermomechanical Processing in a γ-γ’ Nickel-Based Superalloy, Acta Mater., 2012, 60, p 5056–5066

    Article  CAS  Google Scholar 

  12. F. Zhang, D. Liu, Y. Yang, C. Liu, J. Wang, Z. Zhang, and H. Wang, Investigation on the Influences of δ Phase on the Dynamic Recrystallization of Inconel 718 Through a Modified Cellular Automaton Model, J. Alloys Compd., 2020, 830, p 154590

    Article  CAS  Google Scholar 

  13. S. Xia, H. Li, T.G. Liu, and B.X. Zhou, Appling Grain Boundary Engineering to Alloy 690 Tube for Enhancing Intergranular Corrosion Resistance, J. Nucl. Mater., 2011, 416, p 303–310

    Article  CAS  Google Scholar 

  14. F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu, and X.W. Li, Improving Intergranular Corrosion Resistance in a Nickel-Free And Manganese-Bearing High-Nitrogen Austenitic Stainless Steel Through Grain Boundary Character Distribution Optimization, Corros. Sci., 2016, 107, p 49–59

    Article  CAS  Google Scholar 

  15. H. Gleiter, The Formation of Annealing Twins, Acta Mater., 1969, 17, p 1421–1428

    Article  CAS  Google Scholar 

  16. S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath, Formation of Annealing Twins in f.c.c. Crystals, Acta Mater., 1997, 45, p 2633–2638

    Article  CAS  Google Scholar 

  17. B.R. Chen, A.C. Yeh, and J.W. Yeh, Effect of One-Step Recrystallization on the Grain Boundary Evolution of CoCrFeMnNi High Entropy Alloy and its Subsystems, Sci. Rep., 2016, 6, p 22306

    Article  CAS  Google Scholar 

  18. C.S. Pande, M.A. Imam, and B.B. Rath, Study of Annealing Twins in fcc Metals and Alloys, Metall. Trans. A, 1990, 21, p 2891–2896

    Article  Google Scholar 

  19. C.S. Pande and M.A. Imam, Grain Growth and Twin Formation in Boron-Doped Nickel Polycrystals, Mater. Sci. Eng., A, 2009, 512, p 82–86

    Article  Google Scholar 

  20. S. Mahajan, C. Pande, M. Imam, and B. Rath, Formation of annealing twins, Acta Mater., 1997, 45, p 2633–2638

    Article  CAS  Google Scholar 

  21. V. Randle, Twinning-Related Grain Boundary Engineering, Acta Mater., 2004, 52, p 4067–4081

    Article  CAS  Google Scholar 

  22. V. Randle and M. Coleman, A Study of Low-strain and Medium-strain Grain Boundary Engineering, Acta Mater., 2009, 57, p 3410–3421

    Article  CAS  Google Scholar 

  23. Y. Gao, Y. Ding, J. Chen, J. Xu, Y. Ma, and X. Wang, Effect of Twin Boundaries on the Microstructure and Mechanical Properties of Inconel 625 Alloy, Mater. Sci. Eng. A, 2019, 767, p 138361

    Article  CAS  Google Scholar 

  24. S.A. Lockyer and F.W. Noble, Precipitate Structure in a Cu–Ni–Si Alloy, J. Mater. Sci., 1994, 29, p 218–226

    Article  CAS  Google Scholar 

  25. Y. Tang, Y. Kang, L. Yue, and X. Jiao, Mechanical Properties Optimization of a Cu–Be–Co–Ni Alloy by Precipitation Design, J. Alloys Compd., 2017, 695, p 613–625

    Article  CAS  Google Scholar 

  26. X. Guoliang, W. Qiangsong, M. Xujun, X. Baiqing, and P. Lijun, The Precipitation Behavior and Strengthening of a Cu–2.0 wt.% Be Alloy, Mater. Sci. Eng., A, 2012, 558, p 326–330

    Article  Google Scholar 

  27. X. Huang, G. Xie, X. Liu, H. Fu, L. Shao, and Z. Hao, The Influence of Precipitation Transformation on Young’s Modulus and Strengthening Mechanism of a Cu–Be Binary Alloy, Mater. Sci. Eng., A, 2020, 772, p 138592

    Article  CAS  Google Scholar 

  28. Y. Lang, G. Zhou, L. Hou, J. Zhang, and L. Zhuang, Significantly Enhanced the Ductility of the Fine-grained Al–Zn–Mg–Cu Alloy by Strain-induced Precipitation, Mater. Des., 2015, 88, p 625–631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural science foundation of Hunan Province, China (Grant No. 2019JJ50587), the National Natural Science Foundation of China (Grant No. 51704258), and the Science and Technology Foundation of Taicang, China (Grant No. TC2019JC04 and TC2019GY19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daibo Zhu or Peng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, D., Zhu, D. et al. Effects of Pre-Deformation and Heat Treatment on the Microstructure and Mechanical Properties of Cu-2.5Be Sheets. J. of Materi Eng and Perform 29, 5923–5932 (2020). https://doi.org/10.1007/s11665-020-05064-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05064-6

Keywords

Navigation