Skip to main content

Advertisement

Log in

Effect of Synthesis Temperature of Magnetic–Fluorescent Nanoparticles on Properties and Cellular Imaging

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The excellent photoluminescent properties of Fe3O4-graphene quantum dots (Fe3O4/GQD) nanoparticles prepared at 30 and 90 °C have made them as promising optical probes for imaging. Herein, the cytotoxicity of GQD and Fe3O4/GQD nanoparticles in L929 cells was investigated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide] assay. The cellular apoptosis or necrosis was then evaluated by flow cytometry analysis. The Fe3O4/GQD nanoparticles were characterized by transmission electron microscopy (TEM), Raman spectroscopy (Raman), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence (PL). Characterization results obtained, clearly show that Fe3O4/GQD nanoparticles at 30 and 90 °C has been successfully prepared. Water solubility and excellent photostability along with low cytotoxicity of Fe3O4/GQD nanoparticles prepared at 30 and 90 °C were manifested as a remarkable bioimaging material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.L. Liu, B.B. Chen, C.M. Li, C.Z. Huang, Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 21, 449–471 (2019)

    CAS  Google Scholar 

  2. K. Hayashi, S. Ogawa, H. Watanabe, Y. Fujimaki, Y. Oaki, H. Imai, Bull. Chem. Soc. Jpn 92, 1170–1174 (2019)

    CAS  Google Scholar 

  3. A. Cayuela, M.L. Soriano, C. Carrillo-Carrion, M. Valcárcel, Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem. Commun. 52, 1311–1326 (2016)

    CAS  Google Scholar 

  4. D. Wang, J.F. Chen, L. Dai, Recent advances in graphene quantum dots for fluorescence bioimaging from cells through tissues to animals. Part. Part. Syst. Char 5, 515–523 (2015)

    Google Scholar 

  5. A. Colburn, N. Wanninayake, D.Y. Kim, D. Bhattacharyy, Cellulose-graphene quantum dot composite membranes using ionic liquid. J. Membr. Sci. 556, 293–302 (2018)

    CAS  Google Scholar 

  6. Y. Liu, D.Y. Kim, Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing. Chem. Commun. 51, 4176–4179 (2015)

    CAS  Google Scholar 

  7. P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221–258 (2018)

    CAS  Google Scholar 

  8. Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi, G. Chen, Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal. Chem. 84, 8378–8382 (2012)

    CAS  PubMed  Google Scholar 

  9. F. Jiang, D. Chen, R. Li, Y. Wang, G. Zhang, S. Li, J. Zheng, N. Huang, Y. Gu, C. Wang, C. Shu, Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale 5, 1137–1142 (2013)

    CAS  PubMed  Google Scholar 

  10. J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-pasivated by polyethylene glycol and their photoelectric conversion under near–infrared light. New J. Chem. 36, 97–101 (2012)

    CAS  Google Scholar 

  11. M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, C. Liu, S. Yang, Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 22, 7461–7467 (2012)

    CAS  Google Scholar 

  12. J. Peng, S. Wang, P.H. Zhang, L.P. Jiang, J.J. Shi, J.J. Zhu, Fabrication of graphene quantum dots and hexagonal boron nitride nanocomposites for fluorescent cell imaging. J. Biomed. Nanotechnol. 9, 1679–1685 (2013)

    CAS  PubMed  Google Scholar 

  13. Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 13, 2436–2441 (2013)

    CAS  PubMed  Google Scholar 

  14. X.T. Zheng, A.A. Ananthanaraya, D.H. Kim, P. Chen, Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 7, 6278–6286 (2013)

    CAS  PubMed  Google Scholar 

  15. L. Deng, L. Liu, C. Zhu, D. Li, S. Dong, Hybrid gold nanocube@silica@graphene-quantum-dot superstructures: synthesis and specific cell surface protein imaging applications. Chem. Commun. 49, 2503–2505 (2013)

    CAS  Google Scholar 

  16. J.X. Zhao, X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C 1, 4676–4684 (2013)

    Google Scholar 

  17. Z. Qian, J. Ma, X. Shan, L. Shao, J. Zhou, J.R. Chen, H. Feng, Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Adv. 3, 14571–14579 (2013)

    CAS  Google Scholar 

  18. K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)

    CAS  PubMed  Google Scholar 

  19. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, Ajayan, graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012)

    CAS  PubMed  Google Scholar 

  20. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686–3699 (2012)

    CAS  Google Scholar 

  21. S.J. Zhu, J.H. Zhang, X. Liu, B. Li, X.F. Wang, S.J. Tang, Q.N. Meng, Y.F. Li, C. Shi, R. Hu, B. Yang, Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv. 2, 2717–2720 (2012)

    CAS  Google Scholar 

  22. L.L. Li, G.H. Wu, G.H. Yang, J. Peng, J.W. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5, 4015–4039 (2013)

    CAS  PubMed  Google Scholar 

  23. Y. Wang, L. Zhang, R.P. Liang, J.M. Bai, J.D. Qiu, Using graphene quantum dots as photoluminescent probes for protein kinase sensing. Anal. Chem. 85, 9148–9155 (2013)

    CAS  PubMed  Google Scholar 

  24. S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 6858–6860 (2011)

    CAS  Google Scholar 

  25. V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, S. Chand, Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960–9963 (2011)

    CAS  PubMed  Google Scholar 

  26. S. Zhuo, M. Shao, S.T. Lee, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6, 1059–1064 (2012)

    CAS  PubMed  Google Scholar 

  27. J. Shen, Y. Zhu, C. Chen, X. Yang, C. Li, Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun. 47, 2580–2582 (2011)

    CAS  Google Scholar 

  28. M. Nurunnabi, Z. Khatun, K.M. Huh, S.Y. Park, D.Y. Lee, K.J. Cho, Y.K. Lee, Vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7, 6858–6867 (2013)

    CAS  PubMed  Google Scholar 

  29. W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Synergistic effect of hemophotothermal therapy using PEGylated graphene oxide. Biomaterials 32, 8555–8561 (2011)

    CAS  PubMed  Google Scholar 

  30. H. Dai, C. Yang, Y. Tong, G. Xu, X. Ma, Y. Lin, G. Che, Label-free electrochemiluminescent immunosensorfor alpha-fetoprotein: performance of Nafion-carbon nanodots nanocomposite films as antibody carriers. Chem. Commun. 48, 3055–3057 (2012)

    CAS  Google Scholar 

  31. H. Shen, M. Liu, H. He, L. Zhang, J. Huang, Y. Chong, J. Dai, Z. Zhang, PEGylated graphene oxide-mediated protein delivery for cell function regulation. Appl. Mater. Interfaces 4, 6317–6323 (2012)

    CAS  Google Scholar 

  32. X. Yang, G. Niu, X. Cao, Y. Wen, R. Xiang, H. Duan, Y. Chen, The preparation of functionalized graphene oxide for targeted intracellular delivery of SiRNA. J. Mater. Chem. 22, 6649–6654 (2012)

    CAS  Google Scholar 

  33. Y. Zhang, C. Wu, X. Zhou, X. Wu, Y. Yang, H. Wu, S. Guo, J. Zhang, Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5, 1816–1819 (2013)

    CAS  PubMed  Google Scholar 

  34. Y. Jing, Y. Zhu, X. Yang, J. Shen, C. Li, Ultrasound-triggered smart drug release from multifunctional core-shell capsules one-step fabricated by coaxial electrospray method. Langmuir 27, 1175–1180 (2011)

    CAS  PubMed  Google Scholar 

  35. X. Wang, L. Cao, F. Lu, M.J. Meziani, H. Li, G. Qi, Photoinduced electron transfers with carbon dots. Chem. Commun. (2009). https://doi.org/10.1039/B906252A

    Article  Google Scholar 

  36. Z.S. Qian, X.Y. Shan, L.J. Chai, J.J. Ma, J.R. Chen, H. Feng, DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens. Bioelectron. 60, 64–70 (2014)

    CAS  PubMed  Google Scholar 

  37. J. Ju, W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe(III) in aqueous media. Biosens. Bioelectron. 58, 219–225 (2014)

    CAS  PubMed  Google Scholar 

  38. K.C. Barick, S. Singh, D. Bahadur, M.A. Lawande, D.P. Patkar, P.A. Hassan, Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia. J. Colloid Interface Sci. 418, 120–125 (2014)

    CAS  PubMed  Google Scholar 

  39. Y. Chen, B. Song, X. Tang, L. Lu, J. Xue, One-step synthesis of hollow porous Fe3O4 beads–reduced graphene oxide composites with superior battery performance. J. Mater. Chem. 22, 17656–17662 (2012)

    CAS  Google Scholar 

  40. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in grapheme. Phys. Rep. 473, 51–87 (2009)

    CAS  Google Scholar 

  41. Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-assisted thermal reduction of graphite oxide. J. Phys. 114, 14819–14825 (2010)

    CAS  Google Scholar 

  42. L. Cao, X. Wang, M.J. Meziani, F.S. Lu, H.F. Wang, P.J.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S.Y. Xie, Y.P. Sun, Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15 (2012)

    CAS  PubMed  Google Scholar 

  44. Y. Jiacheng, Zh. Tongwei, X. Huangtao, D. Xiaoli, C. Yao, C. Changqian, Thermostable iron oxide nanoparticle synthesis within recombinant ferritins from the hyperthermophile Pyrococcus yayanosii CH1. RSC Adv. 9, 39381–39393 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Prof. Mohammad Ali Shokrgozar of National Cell Bank, Pasteur Institute of Iran, Tehran for cooperation support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheirollah Mehrani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahebalzamani, H., Mehrani, K., Hosseini, H.R.M. et al. Effect of Synthesis Temperature of Magnetic–Fluorescent Nanoparticles on Properties and Cellular Imaging. J Inorg Organomet Polym 30, 4597–4605 (2020). https://doi.org/10.1007/s10904-020-01720-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01720-5

Keywords

Navigation