Skip to main content
Log in

Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids

  • Natural Products - Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

A Correction to this article was published on 12 November 2020

This article has been updated

Abstract

Isoprenoids are a large class of natural products with myriad applications as bioactive and commercial compounds. Their diverse structures are derived from the biosynthetic assembly and tailoring of their scaffolds, ultimately constructed from two C5 hemiterpene building blocks. The modular logic of these platforms can be harnessed to improve titers of valuable isoprenoids in diverse hosts and to produce new-to-nature compounds. Often, this process is facilitated by the substrate or product promiscuity of the component enzymes, which can be leveraged to produce novel isoprenoids. To complement rational enhancements and even re-programming of isoprenoid biosynthesis, high-throughput approaches that rely on searching through large enzymatic libraries are being developed. This review summarizes recent advances and strategies related to isoprenoid synthetic biology, combinatorial biosynthesis, and chemo-enzymatic synthesis, focusing on the past 5 years. Emerging applications of cell-free biosynthesis and high-throughput tools are included that culminate in a discussion of the future outlook and perspective of isoprenoid biosynthetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 12 November 2020

    Unfortunately, the article title was published incorrectly in the HTML version (online version only) of the online published article.

Abbreviations

ADH:

Alcohol-dependent hemiterpene

CoA:

Coenzyme A

CFB:

Cell-free biosynthesis

CFPS:

Cell-free protein synthesis

CRISPR:

Clustered regularly interspaced short palindromic repeats

CYP:

Cytochrome P450

DKP:

Diketopiperazine

DMAA:

Dimethylallyl alcohol

DMAPP:

Dimethylallyl pyrophosphate

DXP:

1-Deoxy-d-xylulose-5-phosphate

FPP:

Farnesyl pyrophosphate

G3P:

Glyceraldehyde-3-phosphate

GGPP:

Geranylgeranyl pyrophosphate

GPP:

Geranyl pyrophosphate

GT:

Glycosyltransferase

HMG-CoA:

3-Hydroxy-3-methyl-glutaryl-CoA

IPP:

Isopentenyl pyrophosphate

ISO:

Isoprenol

MT:

Methyltransferase

MVA:

Mevalonate

NPP:

Neryl pyrophosphate

PTase:

Prenyltransferase

SAM:

(S)-Adenosylmethionine

TC:

Terpene cyclase

References

  1. Christianson DW (2017) Structural and chemical biology of terpenoid cyclases. Chem Rev 117:11570–11648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cox-Georgian D, Ramadoss N, Dona C, Basu C (2019) Therapeutic and medicinal uses of terpenes. Medicinal wcy. Springer International Publishing, Berlin, pp 333–359

    Google Scholar 

  3. Tetali SD (2019) Terpenes and isoprenoids: a wealth of compounds for global use. Planta 249:1–8

    Article  CAS  PubMed  Google Scholar 

  4. Harms V, Kirschning A, Dickschat JS (2020) Nature-driven approaches to non-natural terpene analogues. Nat Prod Rep. https://doi.org/10.1039/c9np00055k

    Article  PubMed  Google Scholar 

  5. Brill ZG, Condakes ML, Ting CP, Maimone TJ (2017) Navigating the chiral pool in the total synthesis of complex terpene natural products. Chem Rev 117:11753–11795. https://doi.org/10.1021/acs.chemrev.6b00834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jürjens G, Kirschning A, Candito DA (2015) Lessons from the synthetic chemist nature. Nat Prod Rep 32:723–737

    Article  PubMed  Google Scholar 

  7. Leweke FM, Piomelli D, Pahlisch F et al (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2:e94–e94. https://doi.org/10.1038/tp.2012.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lodzki M, Godin B, Rakou L et al (2003) Cannabidiol—transdermal delivery and anti-inflammatory effect in a murine model. J Control Release 93:377–387. https://doi.org/10.1016/j.jconrel.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  9. Devinsky O, Cilio MR, Cross H et al (2014) Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55:791–802. https://doi.org/10.1111/epi.12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mechoulam R, Peters M, Murillo-Rodriguez E, Hanuš LO (2007) Cannabidiol—recent advances. Chem Biodiv 4:1678–1692

    Article  CAS  Google Scholar 

  11. Helfrich EJN, Lin G-M, Voigt CA, Clardy J (2019) Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 15:2889–2906. https://doi.org/10.3762/bjoc.15.283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang C, Liwei M, Bin P-B et al (2018) Microbial platform for terpenoid production: Escherichia coli and yeast. Front Microbiol 9:1–8. https://doi.org/10.3389/fmicb.2018.02460

    Article  Google Scholar 

  13. Wang G, Tang W, Bidigare RR (2005) Terpenoids as therapeutic drugs and pharmaceutical agents. In: Natural Products: Drug Discovery and Therapeutic Medicine. Humana Press, pp 197–227

  14. Urano E, Ablan SD, Mandt R et al (2016) Alkyl amine bevirimat derivatives are potent and broadly active HIV-1 maturation inhibitors. Antimicrob Agents Chemother 60:190–197. https://doi.org/10.1128/AAC.02121-15

    Article  CAS  PubMed  Google Scholar 

  15. Loo CSN, Lam NSK, Yu D et al (2017) Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 117:192–217

    Article  CAS  PubMed  Google Scholar 

  16. Paramasivan K, Mutturi S (2017) Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Crit Rev Biotechnol 37:974–989

    Article  CAS  PubMed  Google Scholar 

  17. Ye L, Lv X, Yu H (2016) Engineering microbes for isoprene production. Metab Eng 38:125–138

    Article  CAS  PubMed  Google Scholar 

  18. Volke DC, Rohwer J, Fischer R, Jennewein S (2019) Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1235-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shiba Y, Paradise EM, Kirby J et al (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168. https://doi.org/10.1016/j.ymben.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  20. Ro DK, Paradise EM, Quellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. https://doi.org/10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  21. Ranganathan PR, Nawada N, Narayanan AK, Rao DKV (2020) Triglyceride deficiency and diacylglycerol kinase1 activity lead to the upregulation of mevalonate pathway in yeast: a study for the development of potential yeast platform for improved production of triterpenoid. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158661. https://doi.org/10.1016/j.bbalip.2020.158661

    Article  CAS  PubMed  Google Scholar 

  22. Choi BH, Kim JH, Choi SY et al (2019) Redesign and reconstruction of a mevalonate pathway and its application in terpene production in Escherichia coli. Bioresour Technol Rep 7:100291. https://doi.org/10.1016/j.biteb.2019.100291

    Article  Google Scholar 

  23. Kim SK, Han GH, Seong W et al (2016) CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 38:228–240. https://doi.org/10.1016/j.ymben.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  24. George KW, Thompson MG, Kim J et al (2018) Integrated analysis of isopentenyl pyrophosphate (IPP) toxicity in isoprenoid-producing Escherichia coli. Metab Eng 47:60–72. https://doi.org/10.1016/j.ymben.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  25. Yang J, Son JH, Kim H et al (2019) Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production. Microb Cell Fact 18:168. https://doi.org/10.1186/s12934-019-1213-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen AD, Kim D, Lee EY (2020) Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound. Metab Eng 61:69–78. https://doi.org/10.1016/j.ymben.2020.04.011

    Article  CAS  PubMed  Google Scholar 

  27. Lund S, Hall R, Williams GJ (2019) An artificial pathway for isoprenoid biosynthesis decoupled from native hemiterpene metabolism. ACS Synth Biol 8:232–238. https://doi.org/10.1021/acssynbio.8b00383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Clomburg JM, Qian S, Tan Z et al (2019) The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci USA 116:12810–12815. https://doi.org/10.1073/pnas.1821004116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chatzivasileiou AO, Ward V, Edgar SMB, Stephanopoulos G (2018) Two-step pathway for isoprenoid synthesis. Proc Natl Acad Sci 116:201812935. https://doi.org/10.1073/pnas.1812935116

    Article  CAS  Google Scholar 

  30. Couillaud J, Rico J, Rubini A et al (2019) Simplified in vitro and in vivo bioaccess to prenylated compounds. ACS Omega 4:7838–7849. https://doi.org/10.1021/acsomega.9b00561

    Article  CAS  Google Scholar 

  31. Rico J, Duquesne K, Petit J-LL et al (2019) Exploring natural biodiversity to expand access to microbial terpene synthesis. Microb Cell Fact 18:23. https://doi.org/10.1186/s12934-019-1074-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu Y, Yan Z, Lu X et al (2016) Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis. Sci Rep 6:24117. https://doi.org/10.1038/srep24117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lund S, Courtney T, Williams GJ (2019) Probing the substrate promiscuity of isopentenyl phosphate kinase as a platform for hemiterpene analogue production. ChemBioChem 20:2217. https://doi.org/10.1002/cbic.201900135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson LA, Dunbabin A, Benton JCR et al (2020) Modular chemoenzymatic synthesis of terpenes and their analogues. Angew Chemie Int Ed 59:8486–8490. https://doi.org/10.1002/anie.202001744

    Article  CAS  Google Scholar 

  35. Drummond L, Kschowak MJ, Breitenbach J et al (2019) Expanding the isoprenoid building block repertoire with an IPP methyltransferase from Streptomyces monomycini. ACS Synth Biol 8:1303–1313. https://doi.org/10.1021/acssynbio.8b00525

    Article  CAS  PubMed  Google Scholar 

  36. Eiben CB, De Rond T, Bloszies C et al (2019) Mevalonate pathway promiscuity enables noncanonical terpene production. ACS Synth Biol 8:2238–2247. https://doi.org/10.1021/acssynbio.9b00230

    Article  CAS  PubMed  Google Scholar 

  37. Ignea C, Pontini M, Motawia MS et al (2018) Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering. Nat Chem Biol 14:1090–1098. https://doi.org/10.1038/s41589-018-0166-5

    Article  CAS  PubMed  Google Scholar 

  38. Davisson VJ, Woodside AB, Neal TR et al (1986) Phosphorylation of isoprenoid alcohols. J Org Chem 51:4768–4779. https://doi.org/10.1021/jo00375a005

    Article  CAS  Google Scholar 

  39. Woodside AB, Huang Z, Poulter CD (1988) Trisammonium geranyl diphosphate. Org Synth 66:211. https://doi.org/10.15227/orgsyn.066.0211

    Article  CAS  Google Scholar 

  40. Gatto N, Vattekkatte A, Kö T et al (2015) Isotope sensitive branching and kinetic isotope effects to analyse multiproduct terpenoid synthases from Zea mays. Chem Commun 51:3800. https://doi.org/10.1039/c4cc10395e

    Article  Google Scholar 

  41. Heaps NA, Poulter CD (2011) Synthesis and evaluation of chlorinated substrate analogues for farnesyl diphosphate synthase. J Org Chem 76:1838–1843. https://doi.org/10.1021/jo1024305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hyatt DC, Youn B, Zhao Y et al (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci 104:5360–5365. https://doi.org/10.1073/pnas.0700915104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morehouse BR, Kumar RP, Matos JO et al (2017) Functional and structural characterization of a (+)-limonene synthase from Citrus sinensis. Biochemistry 56:1706–1715. https://doi.org/10.1021/acs.biochem.7b00143

    Article  CAS  PubMed  Google Scholar 

  44. Kumar RP, Morehouse BR, Matos JO et al (2017) Structural characterization of early michaelis complexes in the reaction catalyzed by (+)-limonene synthase from Citrus sinensis using fluorinated substrate analogues. Biochemistry 56:1716–1725. https://doi.org/10.1021/acs.biochem.7b00144

    Article  CAS  PubMed  Google Scholar 

  45. Morehouse BR, Kumar RP, Matos JO et al (2019) Direct evidence of an enzyme-generated LPP intermediate in (+)-limonene synthase using a fluorinated GPP substrate analog. ACS Chem Biol 14:2035–2043. https://doi.org/10.1021/acschembio.9b00514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oldfield E, Lin FY (2012) Terpene biosynthesis: modularity rules. Angew Chemie Int Ed 51:1124–1137. https://doi.org/10.1002/anie.201103110

    Article  CAS  Google Scholar 

  47. Demissie ZA, Erland LAE, Rheault MR, Mahmoud SS (2013) The biosynthetic origin of irregular monoterpenes in Lavandula isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. https://doi.org/10.1074/jbc.M112.431171

  48. Ogawa T, Emi K, Koga K et al (2016) A cis -prenyltransferase from Methanosarcina acetivorans catalyzes both head-to-tail and nonhead-to-tail prenyl condensation. FEBS J 283:2369–2383. https://doi.org/10.1111/febs.13749

    Article  CAS  PubMed  Google Scholar 

  49. Lee PC, Petri R, Mijts BN et al (2005) Directed evolution of Escherichia coli farnesyl diphosphate synthase (IspA) reveals novel structural determinants of chain length specificity. Metab Eng 7:18–26. https://doi.org/10.1016/j.ymben.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  50. Wang K, Ohnuma SI (1999) Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci 24:445–451

    Article  CAS  PubMed  Google Scholar 

  51. Ignea C, Trikka FA, Nikolaidis AK et al (2015) Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metab Eng 27:65–75. https://doi.org/10.1016/j.ymben.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  52. Reiling KK, Yoshikuni Y, Martin VJJ et al (2004) Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 87:200–212. https://doi.org/10.1002/bit.20128

    Article  CAS  PubMed  Google Scholar 

  53. Ohnumaf SI, Narita K, Nakazawa T et al (1996) A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem 271:30748–30754. https://doi.org/10.1074/jbc.271.48.30748

    Article  Google Scholar 

  54. Dudley QM, Nash CJ, Jewett MC (2019) Cell-free biosynthesis of limonene using enzyme-enriched Escherichia coli lysates. Synth Biol 4:1–9. https://doi.org/10.1093/synbio/ysz003

    Article  CAS  Google Scholar 

  55. Noike M, Ambo T, Kikuchi S et al (2008) Product chain-length determination mechanism of Z, E-farnesyl diphosphate synthase. Biochem Biophys Res Commun 377:17–22. https://doi.org/10.1016/j.bbrc.2008.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang C, Zhou J, Jang HJ et al (2013) Engineered heterologous FPP synthases-mediated Z, E-FPP synthesis in E. coli. Metab Eng 18:53–59. https://doi.org/10.1016/j.ymben.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  57. Koyama T, Saito A, Ogura K, Seto S (1980) Substrate specificity of farnesylpyrophosphate synthetase. Application to asymmetric synthesis. J Am Chem Soc 102:3614–3618. https://doi.org/10.1021/ja00530a050

    Article  CAS  Google Scholar 

  58. Qian Q, Schultz AW, Moore BS, Tanner ME (2012) Mechanistic studies on CymD: a tryptophan reverse N-prenyltransferase. Biochemistry 51:7733–7739. https://doi.org/10.1021/bi3009054

    Article  CAS  PubMed  Google Scholar 

  59. Luk LYP, Tanner ME (2009) Mechanism of dimethylallyltryptophan synthase: evidence for a dimethylallyl cation intermediate in an aromatic prenyltransferase reaction. J Am Chem Soc 131:13932–13933. https://doi.org/10.1021/ja906485u

    Article  CAS  PubMed  Google Scholar 

  60. Metzger U, Schall C, Zocher G et al (2009) The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci USA 106:14309–14314. https://doi.org/10.1073/pnas.0904897106

    Article  PubMed  PubMed Central  Google Scholar 

  61. Steffan N, Grundmann A, Yin W-B et al (2008) Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives. Curr Med Chem 16:218–231. https://doi.org/10.2174/092986709787002772

    Article  Google Scholar 

  62. Haug-Schifferdecker E, Arican D, Brückner R, Heide L (2010) A new group of aromatic prenyltransferases in fungi, catalyzing a 2,7-dihydroxynaphthalene 3-dimethylallyl-transferase reaction. J Biol Chem 285:16487–16494. https://doi.org/10.1074/jbc.M110.113720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kremer A, Li SM (2010) A tyrosine O-prenyltransferase catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL. Microbiology 156:278–286. https://doi.org/10.1099/mic.0.033886-0

    Article  CAS  PubMed  Google Scholar 

  64. Liebhold M, Xie X, Li SM (2012) Expansion of enzymatic friedel-crafts alkylation on indoles: acceptance of unnatural β-unsaturated allyl diphospates by dimethylallyl-tryptophan synthases. Org Lett 14:4882–4885. https://doi.org/10.1021/ol302207r

    Article  CAS  PubMed  Google Scholar 

  65. Liebhold M, Li SM (2013) Regiospecific benzylation of tryptophan and derivatives catalyzed by a fungal dimethylallyl transferase. Org Lett 15:5834–5837. https://doi.org/10.1021/ol4029012

    Article  CAS  PubMed  Google Scholar 

  66. Bandari C, Scull EM, Bavineni T et al (2019) FgaPT2, a biocatalytic tool for alkyl-diversification of indole natural products. Medchemcomm 10:1465–1475. https://doi.org/10.1039/c9md00177h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Steffan N, Li SM (2009) Increasing structure diversity of prenylated diketopiperazine derivatives by using a 4-dimethylallyltryptophan synthase. Arch Microbiol 191:461–466. https://doi.org/10.1007/s00203-009-0467-x

    Article  CAS  PubMed  Google Scholar 

  68. Steffan N, Unsöld IA, Li SM (2007) Chemoenzymatic synthesis of prenylated indole derivatives by using a 4-dimethylallyltryptophan synthase from Aspergillus fumigatus. ChemBioChem 8:1298–1307. https://doi.org/10.1002/cbic.200700107

    Article  CAS  PubMed  Google Scholar 

  69. Fan A, Xie X, Li SM (2015) Tryptophan prenyltransferases showing higher catalytic activities for Friedel-Crafts alkylation of o- and m-tyrosines than tyrosine prenyltransferases. Org Biomol Chem 13:7551–7557. https://doi.org/10.1039/c5ob01040c

    Article  CAS  PubMed  Google Scholar 

  70. Mai P, Zocher G, Ludwig L et al (2016) Actions of tryptophan prenyltransferases toward fumiquinazolines and their potential application for the generation of prenylated derivatives by combining chemical and chemoenzymatic syntheses. Adv Synth Catal 358:1639–1653. https://doi.org/10.1002/adsc.201600064

    Article  CAS  Google Scholar 

  71. Fan A, Zocher G, Stec E et al (2015) Site-directed mutagenesis switching a dimethylallyl tryptophan synthase to a specific tyrosine C3-prenylating enzyme. J Biol Chem 290:1364–1373. https://doi.org/10.1074/jbc.M114.623413

    Article  CAS  PubMed  Google Scholar 

  72. Rudolf JD, Poulter CD (2013) Tyrosine O -prenyltransferase SirD catalyzes S -, C -, and N-prenylations on tyrosine and tryptophan derivatives. ACS Chem Biol 8:2707–2714. https://doi.org/10.1021/cb400691z

    Article  CAS  PubMed  Google Scholar 

  73. Bandari C, Scull EM, Masterson JM et al (2017) Determination of Alkyl-Donor Promiscuity of Tyrosine- O-Prenyltransferase SirD from Leptosphaeria maculans. Chem Bio Chem 18:2323–2327. https://doi.org/10.1002/cbic.201700469

    Article  CAS  PubMed  Google Scholar 

  74. Takahashi S, Takagi H, Toyoda A et al (2010) Biochemical characterization of a novel indole prenyltransferase from Streptomyces sp. SN-593. J Bacteriol 192:2839–2851. https://doi.org/10.1128/JB.01557-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liao G, Mai P, Fan J et al (2018) Complete decoration of the indolyl residue in cyclo- l -Trp- l -Trp with geranyl moieties by using engineered dimethylallyl transferases. Org Lett 20:7201–7205. https://doi.org/10.1021/acs.orglett.8b03124

    Article  CAS  PubMed  Google Scholar 

  76. Chen R, Gao B, Liu X et al (2017) Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase. Nat Chem Biol 13:226–234. https://doi.org/10.1038/nchembio.2263

    Article  CAS  PubMed  Google Scholar 

  77. Wollinsky B, Ludwig L, Xie X, Li SM (2012) Breaking the regioselectivity of indole prenyltransferases: identification of regular C3-prenylated hexahydropyrrolo[2,3-b]indoles as side products of the regular C2-prenyltransferase FtmPT1. Org Biomol Chem 10:9262–9270. https://doi.org/10.1039/c2ob26149a

    Article  CAS  PubMed  Google Scholar 

  78. Schuller JM, Zocher G, Liebhold M et al (2012) Structure and catalytic mechanism of a cyclic dipeptide prenyltransferase with broad substrate promiscuity. J Mol Biol 422:87–99. https://doi.org/10.1016/j.jmb.2012.05.033

    Article  CAS  PubMed  Google Scholar 

  79. Jost M, Zocher G, Tarcz S et al (2010) Structure-function analysis of an enzymatic prenyl transfer reaction identifies a reaction chamber with modifiable specificity. J Am Chem Soc 132:17849–17858. https://doi.org/10.1021/ja106817c

    Article  CAS  PubMed  Google Scholar 

  80. Zou HX, Xie XL, Linne U et al (2010) Simultaneous C7- and N1-prenylation of cyclo-l-Trp-l-Trp catalyzed by a prenyltransferase from Aspergillus oryzae. Org Biomol Chem 8:3037–3044. https://doi.org/10.1039/c002850a

    Article  CAS  PubMed  Google Scholar 

  81. Wunsch C, Zou HX, Linne U, Li SM (2015) C7-prenylation of tryptophanyl and O-prenylation of tyrosyl residues in dipeptides by an Aspergillus terreus prenyltransferase. Appl Microbiol Biotechnol 99:1719–1730. https://doi.org/10.1007/s00253-014-5999-6

    Article  CAS  PubMed  Google Scholar 

  82. Burkhardt I, Ye Z, Janevska S et al (2019) Biochemical and mechanistic characterization of the fungal reverse N-1-dimethylallyltryptophan synthase DMATS1Ff. ACS Chem Biol 14:2922–2931. https://doi.org/10.1021/acschembio.9b00828

    Article  CAS  PubMed  Google Scholar 

  83. Kumano T, Richard SB, Noel JP et al (2008) Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities. Bioorganic Med Chem 16:8117–8126. https://doi.org/10.1016/j.bmc.2008.07.052

    Article  CAS  Google Scholar 

  84. Zirpel B, Degenhardt F, Martin C et al (2017) Engineering yeasts as platform organisms for cannabinoid biosynthesis. J Biotechnol 259:204–212. https://doi.org/10.1016/j.jbiotec.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  85. Luo X, Reiter MA, d’Espaux L et al (2019) Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567:123–126. https://doi.org/10.1038/s41586-019-0978-9

    Article  CAS  PubMed  Google Scholar 

  86. Johnson BP, Scull EM, Dimas DA et al (2020) Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB. Appl Microbiol Biotechnol 104:4383–4395. https://doi.org/10.1007/s00253-020-10529-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Araya-Cloutier C, Martens B, Schaftenaar G et al (2017) Structural basis for non-genuine phenolic acceptor substrate specificity of Streptomyces roseochromogenes prenyltransferase CloQ from the ABBA/PT-barrel superfamily. PLoS ONE 12:e0174665. https://doi.org/10.1371/journal.pone.0174665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ozaki T, Mishima S, Nishiyama M, Kuzuyama T (2009) NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids. J Antibiot (Tokyo) 62:385–392. https://doi.org/10.1038/ja.2009.48

    Article  CAS  Google Scholar 

  89. Melzer M, Heide L (1994) Characterization of polyprenyldiphosphate: 4-hydroxybenzoate polyprenyltransferase from Escherichia coli. Biochim Biophys Acta)/Lipids Lipid Metab 1212:93–102

    Article  CAS  Google Scholar 

  90. Ohara K, Yamamoto K, Hamamoto M et al (2006) Functional characterization of OsPPT1, which encodes P-hydroxybenzoate polyprenyltransferase involved in ubiquinone biosynthesis in Oryza sativa. Plant Cell Physiol 47:581–590. https://doi.org/10.1093/PCP/PCJ025

    Article  CAS  PubMed  Google Scholar 

  91. Marshall SA, Payne KAP, Fisher K et al (2019) The UbiX flavin prenyltransferase reaction mechanism resembles class I terpene cyclase chemistry. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-10220-1

    Article  CAS  Google Scholar 

  92. Chekan JR, McKinnie SMK, Noel JP, Moore BS (2020) Algal neurotoxin biosynthesis repurposes the terpene cyclase structural fold into an N-prenyltransferase. Proc Natl Acad Sci USA 117:12799–12805. https://doi.org/10.1073/pnas.2001325117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fan A, Li SM (2016) Saturation mutagenesis on Arg244 of the tryptophan C4-prenyltransferase FgaPT2 leads to enhanced catalytic ability and different preferences for tryptophan-containing cyclic dipeptides. Appl Microbiol Biotechnol 100:5389–5399. https://doi.org/10.1007/s00253-016-7365-3

    Article  CAS  PubMed  Google Scholar 

  94. Zheng L, Mai P, Fan A, Li SM (2018) Switching a regular tryptophan C4-prenyltransferase to a reverse tryptophan-containing cyclic dipeptide C3-prenyltransferase by sequential site-directed mutagenesis. Org Biomol Chem 16:6688–6694. https://doi.org/10.1039/c8ob01735b

    Article  CAS  PubMed  Google Scholar 

  95. Mai P, Zocher G, Stehle T, Li SM (2018) Structure-based protein engineering enables prenyl donor switching of a fungal aromatic prenyltransferase. Org Biomol Chem 16:7461–7469. https://doi.org/10.1039/C8OB02037J

    Article  CAS  PubMed  Google Scholar 

  96. Mori T, Zhang L, Awakawa T et al (2016) Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases. Nat Commun 7:1–11. https://doi.org/10.1038/ncomms10849

    Article  CAS  Google Scholar 

  97. Estrada P, Morita M, Hao Y et al (2018) A single amino acid switch alters the isoprene donor specificity in ribosomally synthesized and post-translationally modified peptide prenyltransferases. J Am Chem Soc 140:8124–8127. https://doi.org/10.1021/jacs.8b05187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zocher G, Saleh O, Heim JB et al (2012) Structure-based engineering increased the catalytic turnover rate of a novel phenazine prenyltransferase. PLoS ONE 7:e48427. https://doi.org/10.1371/journal.pone.0048427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Preciado S, Mendive-Tapia L, Torres-García C et al (2013) Synthesis and biological evaluation of a post-synthetically modified Trp-based diketopiperazine. Medchemcomm 4:1171–1174. https://doi.org/10.1039/c3md20353k

    Article  CAS  Google Scholar 

  100. Hall JA, Seedarala S, Zhao H et al (2016) Novobiocin analogues that inhibit the MAPK pathway. J Med Chem 59:925–933. https://doi.org/10.1021/acs.jmedchem.5b01354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Galm U, Heller S, Shapiro S et al (2004) Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin derivatives produced by mutasynthesis. Antimicrob Agents Chemother 48:1307–1312. https://doi.org/10.1128/AAC.48.4.1307-1312.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tsai FT, Singh OM, Skarzynski T et al (1997) The high-resolution crystal structure of a 24-kDa gyrase B fragment from E. coli complexed with one of the most potent coumarin inhibitors, clorobiocin. Proteins 28:41–52

    Article  CAS  PubMed  Google Scholar 

  103. Wendt KU, Schulz GE (1998) Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure 6:127–133. https://doi.org/10.1016/S0969-2126(98)00015-X

    Article  CAS  PubMed  Google Scholar 

  104. Zhang Q, Catti L, Syntrivanis LD, Tiefenbacher K (2019) En route to terpene natural products utilizing supramolecular cyclase mimetics. Nat Prod Rep 36:1619–1627

    Article  CAS  PubMed  Google Scholar 

  105. Abdallah II, Van Merkerk R, Klumpenaar E, Quax WJ (2018) Catalysis of amorpha-4,11-diene synthase unraveled and improved by mutability landscape guided engineering. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-28177-4

    Article  CAS  Google Scholar 

  106. Yuan W, Lv S, Chen L et al (2019) Production of sesterterpene ophiobolin by a bifunctional terpene synthase in Escherichia coli. Appl Microbiol Biotechnol 103:8785–8797. https://doi.org/10.1007/s00253-019-10103-x

    Article  CAS  PubMed  Google Scholar 

  107. Lauchli R, Rabe KS, Kalbarczyk KZ et al (2013) High-throughput screening for terpene-synthase-cyclization activity and directed evolution of a terpene synthase. Angew Chemie Int Ed 52:5571–5574. https://doi.org/10.1002/anie.201301362

    Article  CAS  Google Scholar 

  108. Baer P, Rabe P, Fischer K et al (2014) Induced-fit mechanism in class I terpene cyclases. Angew Chemie Int Ed 53:7652–7656. https://doi.org/10.1002/anie.201403648

    Article  CAS  Google Scholar 

  109. Major DT, Freud Y, Weitman M (2014) Catalytic control in terpenoid cyclases: Multiscale modeling of thermodynamic, kinetic, and dynamic effects. Curr Opin Chem Biol 21:25–33

    Article  CAS  PubMed  Google Scholar 

  110. Loizzi M, Miller DJ, Allemann RK (2019) Silent catalytic promiscuity in the high-fidelity terpene cyclase δ-cadinene synthase. Org Biomol Chem 17:1206–1214. https://doi.org/10.1039/c8ob02821d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Felicetti B, Cane DE (2004) Aristolochene synthase: mechanistic analysis of active site residues by site-directed mutagenesis. J Am Chem Soc 126:7212–7221. https://doi.org/10.1021/ja0499593

    Article  CAS  PubMed  Google Scholar 

  112. Chen M, Chou WKW, Al-Lami N et al (2016) Probing the role of active site water in the sesquiterpene cyclization reaction catalyzed by aristolochene synthase. Biochemistry 55:2864–2874. https://doi.org/10.1021/acs.biochem.6b00343

    Article  CAS  PubMed  Google Scholar 

  113. Aaron JA, Lin X, Cane DE, Christianson DW (2010) Structure of epi-isozizaene synthase from streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates. Biochemistry 49:1787–1797. https://doi.org/10.1021/bi902088z

    Article  CAS  PubMed  Google Scholar 

  114. Blank PN, Barrow GH, Christianson DW (2019) Crystal structure of F95Q epi-isozizaene synthase, an engineered sesquiterpene cyclase that generates biofuel precursors β- and γ-curcumene. J Struct Biol 207:218–224. https://doi.org/10.1016/j.jsb.2019.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li R, Chou WKW, Himmelberger JA et al (2014) Reprogramming the chemodiversity of terpenoid cyclization by remolding the active site contour of epi-isozizaene synthase. Biochemistry 53:1155–1168. https://doi.org/10.1021/bi401643u

    Article  CAS  PubMed  Google Scholar 

  116. Vedula LS, Jiang J, Zakharian T et al (2008) Structural and mechanistic analysis of trichodiene synthase using site-directed mutagenesis: probing the catalytic function of tyrosine-295 and the asparagine-225/serine-229/glutamate-233-Mg2 +B motif. Arch Biochem Biophys 469:184–194. https://doi.org/10.1016/j.abb.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  117. Dixit M, Weitman M, Gao J, Major DT (2017) Chemical control in the battle against fidelity in promiscuous natural product biosynthesis: The case of trichodiene synthase. ACS Catal 7:812–818. https://doi.org/10.1021/acscatal.6b02584

    Article  CAS  PubMed  Google Scholar 

  118. Karuppiah V, Ranaghan KE, Leferink NGH et al (2017) Structural basis of catalysis in the bacterial monoterpene synthases linalool synthase and 1,8-cineole synthase. ACS Catal 7:6268–6282. https://doi.org/10.1021/acscatal.7b01924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Leferink NGH, Ranaghan KE, Battye J et al (2020) Taming the reactivity of monoterpene synthases to guide regioselective product hydroxylation. ChemBioChem 21:985–990. https://doi.org/10.1002/cbic.201900672

    Article  CAS  PubMed  Google Scholar 

  120. Ker DS, Chan KG, Othman R et al (2020) Site-directed mutagenesis of β sesquiphellandrene synthase enhances enzyme promiscuity. Phytochemistry 173:112286. https://doi.org/10.1016/j.phytochem.2020.112286

    Article  CAS  PubMed  Google Scholar 

  121. Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis): Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ- humulene synthase. J Biol Chem 273:2078–2089. https://doi.org/10.1074/jbc.273.4.2078

    Article  CAS  PubMed  Google Scholar 

  122. Little DB, Croteau RB (2002) Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Arch Biochem Biophys 402:120–135. https://doi.org/10.1016/S0003-9861(02)00068-1

    Article  CAS  PubMed  Google Scholar 

  123. Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082. https://doi.org/10.1038/nature04607

    Article  CAS  PubMed  Google Scholar 

  124. Pazouki L, Niinemetst U (2016) Multi-substrate terpene synthases: Their occurrence and physiological significance. Front Plant Sci 7:1019. https://doi.org/10.3389/fpls.2016.01019

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hendrikse NM, Charpentier G, Nordling E, Syrén P (2018) Ancestral diterpene cyclases show increased thermostability and substrate acceptance. FEBS J 285:4660–4673. https://doi.org/10.1111/febs.14686

    Article  CAS  PubMed  Google Scholar 

  126. Zhang M, Liu J, Li K, Yu D (2013) Identification and characterization of a novel monoterpene synthase from soybean restricted to neryl diphosphate precursor. PLoS ONE 8:e75972. https://doi.org/10.1371/journal.pone.0075972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schilmiller AL, Schauvinhold I, Larson M et al (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106:10865–10870. https://doi.org/10.1073/pnas.0904113106

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ignea C, Raadam MH, Motawia MS et al (2019) Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate. Nat Commun 10:1–15. https://doi.org/10.1038/s41467-019-11290-x

    Article  CAS  Google Scholar 

  129. Aguilar F, Hartwig S, Scheper T, Beutel S (2019) Catalytical specificity, reaction mechanisms, and conformational changes during catalysis of the recombinant SUMO (+)-zizaene synthase from Chrysopogon zizanioides. ACS Omega 4:6199–6209. https://doi.org/10.1021/acsomega.9b00242

    Article  CAS  Google Scholar 

  130. Vattekkatte A, Garms S, Boland W (2017) Alternate cyclization cascade initiated by substrate isomer in multiproduct terpene synthase from Medicago truncatula. J Org Chem 82:2855–2861. https://doi.org/10.1021/acs.joc.6b02696

    Article  CAS  PubMed  Google Scholar 

  131. Miller DJ, Yu F, Knight DW, Allemann RK (2009) 6- and 14-Fluoro farnesyl diphosphate: mechanistic probes for the reaction catalysed by aristolochene synthase. Org Biomol Chem 7:962. https://doi.org/10.1039/b817194g

    Article  CAS  PubMed  Google Scholar 

  132. Rising KA, Crenshaw CM, Koo HJ et al (2015) Formation of a novel macrocyclic alkaloid from the unnatural farnesyl diphosphate analogue anilinogeranyl diphosphate by 5-epi-aristolochene synthase. ACS Chem Biol 10:1729–1736. https://doi.org/10.1021/acschembio.5b00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Faraldos JA, Miller DJ, González V et al (2012) A 1,6-ring closure mechanism for (+)-δ-cadinene synthase? J Am Chem Soc 134:5900–5908. https://doi.org/10.1021/ja211820p

    Article  CAS  PubMed  Google Scholar 

  134. Touchet S, Chamberlain K, Woodcock CM et al (2015) Novel olfactory ligands via terpene synthases. Chem Commun 51:7550–7553. https://doi.org/10.1039/c5cc01814e

    Article  CAS  Google Scholar 

  135. Köksal M, Chou WKW, Cane DE, Christianson DW (2013) Unexpected reactivity of 2-fluorolinalyl diphosphate in the active site of crystalline 2-methylisoborneol synthase. Biochemistry 52:5247–5255. https://doi.org/10.1021/bi400797c

    Article  CAS  PubMed  Google Scholar 

  136. Huynh F, Grundy DJ, Jenkins RL et al (2018) Sesquiterpene synthase-catalysed formation of a new medium-sized cyclic terpenoid ether from farnesyl diphosphate analogues. ChemBioChem 19:1834–1838. https://doi.org/10.1002/cbic.201800218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Demiray M, Tang X, Wirth T et al (2017) An efficient chemoenzymatic synthesis of dihydroartemisinic aldehyde. Angew Chemie Int Ed 56:4347–4350. https://doi.org/10.1002/anie.201609557

    Article  CAS  Google Scholar 

  138. Seitz M, Syrén P-O, Steiner L et al (2013) Synthesis of heterocyclic terpenoids by promiscuous squalene-hopene cyclases. ChemBioChem 14:436–439. https://doi.org/10.1002/cbic.201300018

    Article  CAS  PubMed  Google Scholar 

  139. Hammer SC, Syrén PO, Seitz M et al (2013) Squalene hopene cyclases: Highly promiscuous and evolvable catalysts for stereoselective CC and CX bond formation. Curr Opin Chem Biol 17:293–300. https://doi.org/10.1016/j.cbpa.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  140. Chang MCY, Eachus RA, Trieu W et al (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3:274–277. https://doi.org/10.1038/nchembio875

    Article  CAS  PubMed  Google Scholar 

  141. Huang JH, Lv JM, Wang QZ et al (2019) Biosynthesis of an anti-tuberculosis sesterterpenoid asperterpenoid A. Org Biomol Chem 17:248–251. https://doi.org/10.1039/c8ob02832j

    Article  CAS  PubMed  Google Scholar 

  142. Yee DA, Kakule TB, Cheng W et al (2020) Genome mining of alkaloidal terpenoids from a hybrid terpene and nonribosomal peptide biosynthetic pathway. J Am Chem Soc 142:710–714. https://doi.org/10.1021/jacs.9b13046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hernandez-Ortega A, Vinaixa M, Zebec Z et al (2018) A Toolbox for Diverse Oxyfunctionalisation of Monoterpenes. Open 8:14396. https://doi.org/10.1038/s41598-018-32816-1

    Article  CAS  Google Scholar 

  144. Leferink NGH, Dunstan MS, Hollywood KA et al (2019) An automated pipeline for the screening of diverse monoterpene synthase libraries. Sci Rep. https://doi.org/10.1038/s41598-019-48452-2

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wong J, de Rond T, d’Espaux L et al (2018) High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae. Metab Eng 45:142–148. https://doi.org/10.1016/j.ymben.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  146. Sarrade-Loucheur A, Ro D-K, Régis R et al (2020) Synthetic derivatives of (+)-epi-α-bisabolol are formed by mammalian cytochromes P450 expressed in a yeast reconstituted pathway. ACS Synth Biol 2020:380. https://doi.org/10.1021/acssynbio.9b00399

    Article  CAS  Google Scholar 

  147. Tsutsumi H, Katsuyama Y, Izumikawa M et al (2018) Unprecedented cyclization catalyzed by a cytochrome P450 in benzastatin biosynthesis. J Am Chem Soc 140:6631–6639. https://doi.org/10.1021/jacs.8b02769

    Article  CAS  PubMed  Google Scholar 

  148. Reymond J, Wahler D (2002) Substrate arrays as enzyme fingerprinting tools. ChemBioChem 3:701–708. https://doi.org/10.1002/1439-7633(20020802)3:8<701:AID-CBIC701>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  149. Fessner ND (2019) P450 monooxygenases enable rapid late-stage diversification of natural products via C−H bond activation. ChemCatChem 11:2226–2242. https://doi.org/10.1002/cctc.201801829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang K, El Damaty S, Fasan R (2011) P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity. J Am Chem Soc 133:3242–3245. https://doi.org/10.1021/ja109590h

    Article  CAS  PubMed  Google Scholar 

  151. Zhang K, Shafer BM, Demars MD et al (2012) Controlled oxidation of remote sp 3 C−H bonds in artemisinin via P450 catalysts with fine-tuned regio-and stereoselectivity. J Am Chem Soc 134:18695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rivas F, Parra A, Martinez A, Garcia-Granados A (2013) Enzymatic glycosylation of terpenoids. Phytochem Rev 12:327–339. https://doi.org/10.1007/s11101-013-9301-9

    Article  CAS  Google Scholar 

  153. Bashyal P, Pandey RP, Samir II et al (2019) Biocatalytic synthesis of non-natural monoterpene O-glycosides exhibiting superior antibacterial and antinematodal properties. ACS Omega 4:9367. https://doi.org/10.1021/acsomega.9b00535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hou A, Lauterbach L, Dickschat JS (2020) Enzymatic synthesis of methylated terpene analogues using the plasticity of bacterial terpene synthases. Chem A Eur J 26:2178–2182. https://doi.org/10.1002/chem.201905827

    Article  CAS  Google Scholar 

  155. Rudolf JD, Chang CY (2020) Terpene synthases in disguise: Enzymology, structure, and opportunities of non-canonical terpene synthases. Nat Prod Rep 37:425–463. https://doi.org/10.1039/c9np00051h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355. https://doi.org/10.1038/nrmicro3240

    Article  CAS  PubMed  Google Scholar 

  157. Hsu SY, Perusse D, Hougard T, Smanski MJ (2019) Semisynthesis of the neuroprotective metabolite, serofendic acid. ACS Synth Biol 8:2397–2403. https://doi.org/10.1021/acssynbio.9b00261

    Article  CAS  PubMed  Google Scholar 

  158. Li G, Obul M, Zhao J, yu, et al (2019) Novel amides modified rupestonic acid derivatives as anti-influenza virus reagents. Bioorg Med Chem Lett 29:126605. https://doi.org/10.1016/j.bmcl.2019.08.009

    Article  CAS  PubMed  Google Scholar 

  159. Kanda Y, Nakamura H, Umemiya S et al (2020) Two-phase synthesis of Taxol®. ChemRxiv. https://doi.org/10.26434/CHEMRXIV.12061620.V1

    Article  Google Scholar 

  160. Zhang S, Wang X, Hao J et al (2018) Expediently scalable synthesis and antifungal exploration of (+)-yahazunol and related meroterpenoids. J Nat Prod 81:2010–2017. https://doi.org/10.1021/acs.jnatprod.8b00310

    Article  CAS  PubMed  Google Scholar 

  161. Yu W, Hjerrild P, Overgaard J, Poulsen TB (2016) A concise route to the strongylophorines. Angew Chemie Int Ed 55:8294–8298. https://doi.org/10.1002/anie.201602476

    Article  CAS  Google Scholar 

  162. Karim AS, Jewett MC (2018) Cell-free synthetic biology for pathway prototyping. Methods Enzymol 608:31–57. https://doi.org/10.1016/bs.mie.2018.04.029

    Article  CAS  PubMed  Google Scholar 

  163. Chubukov V, Mingardon F, Schackwitz W et al (2015) Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Appl Environ Microbiol 81:4690–4696. https://doi.org/10.1128/AEM.01102-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Niu FX, Bin HY, Shen YP et al (2020) Enhanced production of pinene by using a cell-free system with modular cocatalysis. J Agric Food Chem 68:2139–2145. https://doi.org/10.1021/acs.jafc.9b07830

    Article  CAS  PubMed  Google Scholar 

  165. Korman TP, Opgenorth PH, Bowie JU (2017) A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat Commun 8:15526. https://doi.org/10.1038/ncomms15526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dudley QM, Anderson KC, Jewett MC (2016) Cell-Free mixing of Escherichia coli crude extracts to prototype and rationally engineer high-titer mevalonate synthesis. ACS Synth Biol 5:1578–1588. https://doi.org/10.1021/acssynbio.6b00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ward VCA, Chatzivasileiou AO, Stephanopoulos G (2019) Cell free biosynthesis of isoprenoids from isopentenol. Biotechnol Bioeng 116:3269–3281. https://doi.org/10.1002/bit.27146

    Article  CAS  PubMed  Google Scholar 

  168. Liu WQ, Zhang L, Chen M, Li J (2019) Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochem Eng J 141:182–189. https://doi.org/10.1016/j.bej.2018.10.023

    Article  CAS  Google Scholar 

  169. Dudley QM, Karim AS, Nash CJ, Jewett MC (2020) Cell-free prototyping of limonene biosynthesis using cell-free protein synthesis. Metab Eng. https://doi.org/10.1016/j.ymben.2020.05.006

    Article  PubMed  Google Scholar 

  170. Khambhati K, Bhattacharjee G, Gohil N et al (2019) Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Front Bioeng Biotechnol 7:248

    Article  PubMed  PubMed Central  Google Scholar 

  171. Rogers JK, Taylor ND, Church GM (2016) Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol 42:84–91. https://doi.org/10.1016/J.COPBIO.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  172. Zeng W, Guo L, Xu S et al (2020) High-throughput screening technology in industrial biotechnology. Trends Biotechnol 38:888–906. https://doi.org/10.1016/j.tibtech.2020.01.001

  173. Li C, Swofford CA, Sinskey AJ (2020) Modular engineering for microbial production of carotenoids. Metab Eng Commun 10:e00118. https://doi.org/10.1016/j.mec.2019.e00118

    Article  PubMed  Google Scholar 

  174. Furubayashi M, Ikezumi M, Kajiwara J et al (2014) A high-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption. PLoS ONE 9:e93317. https://doi.org/10.1371/journal.pone.0093317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Schmidt-Dannert C, Umeno D, Arnold FH (2000) Molecular breeding of carotenoid biosynthetic pathways. Nat Biotechnol 18:750–753. https://doi.org/10.1038/77319

    Article  CAS  PubMed  Google Scholar 

  176. Vardakou M, Salmon M, Faraldos JA, O’Maille PE (2014) Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases. MethodsX 1:e187–e196. https://doi.org/10.1016/j.mex.2014.08.007

    Article  Google Scholar 

  177. Barja MV, Rodríguez-Concepción M (2020) A simple in vitro assay to measure the activity of geranylgeranyl diphosphate synthase and other short-chain prenyltransferases. Methods Mol Biol 2083:27–38. https://doi.org/10.1007/978-1-4939-9952-1_2

    Article  CAS  PubMed  Google Scholar 

  178. Vazquez MJ, Rodriguez B, Zapatero C, Tew DG (2003) Determination of phosphate in nanomolar range by an enzyme-coupling fluorescent method. Anal Biochem 320:292–298. https://doi.org/10.1016/S0003-2697(03)00400-7

    Article  CAS  PubMed  Google Scholar 

  179. Helenius M, Jalkanen S, Yegutkin GG (2012) Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochim Biophys Acta Mol Cell Res 1823:1967–1975. https://doi.org/10.1016/j.bbamcr.2012.08.001

    Article  CAS  Google Scholar 

  180. Testa CA, Johnson LJ (2012) A whole-cell phenotypic screening platform for identifying methylerythritol phosphate pathway-selective inhibitors as novel antibacterial agents. Antimicrob Agents Chemother 56:4906–4913. https://doi.org/10.1128/AAC.00987-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang B, Watts KM, Hodge D et al (2011) A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochemistry 50:3570–3577. https://doi.org/10.1021/bi200113y

    Article  CAS  PubMed  Google Scholar 

  182. Kang A, Meadows CW, Canu N et al (2017) High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production. Metab Eng 41:125–134. https://doi.org/10.1016/J.YMBEN.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  183. Nazari M, Malico AA, Ekelöf M et al (2017) Direct analysis of terpenes from biological buffer systems using SESI and IR-MALDESI. Anal Bioanal Chem. https://doi.org/10.1007/s00216-017-0570-9

    Article  PubMed  Google Scholar 

  184. Nazari M, Ekelöf M, Khodjaniyazova S et al (2017) Direct screening of enzyme activity using infrared matrix-assisted laser desorption electrospray ionization. Rapid Commun Mass Spectrom 31:1868–1874. https://doi.org/10.1002/rcm.7971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tang SY, Cirino PC (2011) Design and application of a mevalonate-responsive regulatory protein. Angew Chemie Int Ed 50:1084–1086. https://doi.org/10.1002/anie.201006083

    Article  CAS  Google Scholar 

  186. Liu C-L, Cai J-Y, Bi H-R, Tan T-W (2018) A novel DMAPP-responding genetic circuit sensor for high-throughput screening and evolving isoprene synthase. Appl Microbiol Biotechnol 102:1381–1391. https://doi.org/10.1007/s00253-017-8676-8

    Article  CAS  PubMed  Google Scholar 

  187. Chou HH, Keasling JD (2013) Programming adaptive control to evolve increased metabolite production. Nat Commun 4:2595. https://doi.org/10.1038/ncomms3595

    Article  CAS  PubMed  Google Scholar 

  188. Choi YJ, Morel L, Le François T et al (2010) Novel, versatile, and tightly regulated expression system for Escherichia coli strains. Appl Environ Microbiol 76:5058–5066. https://doi.org/10.1128/AEM.00413-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Aramaki H, Kabata H, Takeda S et al (2011) Formation of repressor-inducer-operator ternary complex: negative cooperativity of d-camphor binding to CamR. Genes Cells 16:1200–1207. https://doi.org/10.1111/j.1365-2443.2011.01563.x

    Article  CAS  PubMed  Google Scholar 

  190. Zhu D, Wang Y, Zhang M et al (2013) Product-mediated regulation of pentalenolactone biosynthesis in Streptomyces species by the marR/SlyA Family Activators PenR and PntR. J Bacteriol 195:1255–1266. https://doi.org/10.1128/JB.02079-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Förster-Fromme K, Jendrossek D (2010) AtuR is a repressor of acyclic terpene utilization (Atu) gene cluster expression and specifically binds to two 13 bp inverted repeat sequences of the atuA-atuR intergenic region. FEMS Microbiol Lett 308:166–174. https://doi.org/10.1111/j.1574-6968.2010.02005.x

    Article  CAS  PubMed  Google Scholar 

  192. Kasey C, Zerrad M, Li Y et al (2018) Development of transcription factor-based designer macrolide biosensors for metabolic engineering and synthetic biology. ACS Synth Biol 7:227–239. https://doi.org/10.1021/acssynbio.7b00287

    Article  CAS  PubMed  Google Scholar 

  193. Meyer AJ, Segall-Shapiro TH, Glassey E et al (2019) Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nat Chem Biol 15:196–204. https://doi.org/10.1038/s41589-018-0168-3

    Article  CAS  PubMed  Google Scholar 

  194. Siu Y, Fenno J, Lindle JM, Dunlop MJ (2018) Design and selection of a synthetic feedback loop for optimizing biofuel tolerance. ACS Synth Biol 7:16–23. https://doi.org/10.1021/acssynbio.7b00260

    Article  CAS  PubMed  Google Scholar 

  195. Zeng T, Liu Z, Zhuang J et al (2020) TeroKit: a database-driven web server for terpenome research. J Chem Inf Model 60:2082–2090. https://doi.org/10.1021/acs.jcim.0c00141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support is provided by the National Institutes of Health (Award Number GM124112) and the Thomas Lord Distinguished Professorship Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin J. Williams.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malico, A.A., Calzini, M.A., Gayen, A.K. et al. Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids. J Ind Microbiol Biotechnol 47, 675–702 (2020). https://doi.org/10.1007/s10295-020-02306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02306-3

Keyword

Navigation