Skip to main content
Log in

Zircon U–Pb ages and geochemistry of granitoid from the southwest part of the Taşlıçay batholith: Implications for Neotethyan closure in Eastern Anatolia, Turkey

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The composite Taşlıçay batholith that is located in the Eastern Anatolian Accretionary Complex (EAAC) includes I- and S-type granitoid rocks. This batholith occurred as a result of the collision between Arabian and Eurasian plates along the Bitlis–Zagros suture zone during the Early Miocene (Burdigalian). This paper presents new whole rock geochemical and zircon U–Pb geochronological data from the southwest part of Taşlıçay batholith. The study area contains S-type granitoids such as tonalite, granodiorite, monzogranite, and granite. These rocks are characterized by enrichments in large ion lithophile elements (LILEs) (Cs, Ba, Rb, K) and light rare earth elements (LREEs), and depletions in high field strength elements (HFSEs) (Nb, P, Ti). They contain a number of mafic microgranular enclaves (MMEs) that are quartz microdiorite in composition. Aluminium Saturation Index (ASI) and CIPW normative corundum values of these granitoids vary between 0.98 and 1.22 and 0.06–1.55%, respectively. The zircon U–Pb ages of the studied granitoids range between 19.8 and 20.0 Ma. Considering all geological, geochemical and geochronological data, we suggest that S-type granitoids from the southwest part of Taşlıçay batholith were formed with assimilation fractional crystallization (AFC) from a hybrid magma source in a syn-collisional (Arabian–Eurasian collision) tectonic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Açlan M and Turgut İ K 2017 Mineralogical–petrographical and geochemical properties of the volcanic rocks surrounding Şekerbulak (Diyadin–Ağrı); Çukurova Univ. J. Fac. Eng. Archit. 32(4) 163–174.

    Google Scholar 

  • Açlan M and Altun Y 2018 Syn-collisional I-type Esenköy Pluton (Eastern Anatolia–Turkey): An indication for collision between Arabian and Eurasian plates; J. Afr. Earth Sci. 142 1–11.

    Google Scholar 

  • Açlan M and Duruk H İ 2018 Geochemistry, zircon U–Pb geochronology and tectonic setting of the Taşlıçay Granitoids, Eastern Anatolia, Turkey; Arab. J. Geosci. 11(13) 336.

    Google Scholar 

  • Andersen T 2002 Correction of common lead in U–Pb analyses that do not report 204Pb; Chem. Geol. 192 59–79.

    Google Scholar 

  • Angus D A, Wilson D C, Sandvol E and Ni J F 2006 Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions; Geophys. J. Int. 166 1335–1346.

    Google Scholar 

  • Barbarin B and Didier J 1992 Genesis and evolution of mafic micro-granular enclaves through various types of interaction between coexisting felsic and mafic magmas; Trans. Roy. Soc. Edinb. Earth Sci. 83 145–153.

    Google Scholar 

  • Barbarin B 1999 A review of the relationships between granitoid types, their origins and their geodynamic environments; Lithos 46 605–626.

    Google Scholar 

  • Barbarin B 2005 Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts; Lithos 80(1) 155–177.

    Google Scholar 

  • Bozkurt E 2001 Neotectonics of Turkey – a synthesis; Geodin. Act. 14(1–3) 3–30.

    Google Scholar 

  • Brown G C, Thorpe R S and Webb P C 1984 The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources; J. Geol. Soc. Lond. 141 413–426.

    Google Scholar 

  • Chappell B W and White A J R 1974 Two contrasting granite types; Pac. Geol. 8 173–174.

  • Chappell B W and White A J R 1992 I- and S-type granites in Lachlan Fold Belt; Trans. R. Soc. Edinb. (ES) 83 1–26.

    Google Scholar 

  • Chappell B W 1999 Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites; Lithos 46 535–551.

    Google Scholar 

  • Clarke D B 1992 Granitoid Rocks; Chapman and Hall, 283p.

  • Cox K G, Bell J D and Pankhurst R J 1979 The Interpretation of Igneous Rocks; George Allen & Unwin, London 450p.

    Google Scholar 

  • Çolakoğlu A R and Arehart G B 2010 The petrogenesis of Sarıçimen (Çaldıran–Van) quartz monzodiorite: Implication for initiation of magmatism (Late Medial Miocene) in the east Anatolian collision zone, Turkey; Lithos 119(3–4) 607–620.

    Google Scholar 

  • Debon F and Le Fort P 1983 A chemical–mineralogical classification of common plutonic rocks and associations; Trans. R. Soc. Edinb. Earth Sci. 73 135–149.

    Google Scholar 

  • Dessai A G, Downes H, Lopez–Moro F J and Lopez–Plaza M 2008 Lower crustal contamination of Deccan Traps magmas: evidence from tholeiitic dykes and granulite xenoliths from western India; Min. Petrol. 93(3–4) 243–272, https://doi.org/10.1007/s00710-007-0223-3.

    Article  Google Scholar 

  • De Paolo D J 1982 Sm–Nd, Rb–Sr and U–Th–Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antartica; Nature 298 614–618.

    Google Scholar 

  • Dewey J F, Hempton M R, Kidd W S F, Şaroğlu F and Şengör A M C 1986 Shortening of continental lithosphere: The neotectonics of Eastern Anatolia – a young collision zone; In: Collision Tectonics (eds) Coward M P and Riea A C, Geol. Soc. Lond. Spec. Publ. 19 3–36.

  • Didier J 1973 Granites and their enclaves. The bearing of enclaves on the origin of granites; Geol. Mag. 111 467–468.

    Google Scholar 

  • Elemer P M, Kovacs G and Batki A 2001 Petrographical characteristics of Variscan granitoids of Battonya unit Boroholes (SE Hungary); Acta Mineral. Petrogr. Szeged 42 21–31.

    Google Scholar 

  • Foerster H J, Tischendorf G and Trumbull R B 1997 An evaluation of the Rb vs. (Y + Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks; Lithos 40 261–293.

  • Frost B R and Frost C D 2008 A geochemical classification for feldspathic igneous rocks; J. Petrol. 49 1955–1969.

    Google Scholar 

  • Gao S, Luo T C, Zhang B R, Zhang H F and Han Y W 1998 Chemical composition of the continental crust as revealed by studies in East China; Geochim. Cosmochim. Acta 62 1959–1975.

    Google Scholar 

  • Hibbard M J 1991 Textural anatomy of 12 magma mixed granitoid systems; İn: Enclaves and Granite Petrology (eds) Didier J and Barbarin B, Dev. Petrol. 13 431–444.

  • Holden P, Halliday A N, Stephens W E and Henney P J 1991 Chemical and isotopic evidences for major mass transfer between mafic enclaves and felsic magma; Chem. Geol. 92 135–152.

    Google Scholar 

  • Hoskin P W O and Schaltegger U 2003 The composition of zircon and igneous and metamorphic petrogenesis; Rev. Min. Geochem. 53 27–62.

    Google Scholar 

  • Hutchison W, Mather T A, Pyle D M, Boyce A J, Gleeson M L, Yirgu G, Blundy J D, Ferguson J D, Vye-Brown C, Millar L I, Sims K W and Finch A A 2018 The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes; Earth Planet. Sci. Lett. 489 203–218.

    Google Scholar 

  • Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M and Chen H H 2012 Improved in-situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS; J. Analyt. At. Spectrom. 27(9) 1391–1399.

    Google Scholar 

  • Irvine T N and Baragar W R A 1971 A guide to the chemical classification of the common volcanic rocks; Can. J. Earth Sci. 8 523–548.

    Google Scholar 

  • Jackson S E, Pearson N J, Griffin W L and Belousova E A 2004 The application of laser ablation–inductively coupled plasma–mass spectrometry to in-situ U–Pb zircon geochronology; Chem. Geol. 211 47–69.

    Google Scholar 

  • Karslı O, Chen B, Aydin F and Şen C 2007 Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting; Lithos 98 67–96.

    Google Scholar 

  • Keskin M 2003 Magma generation by slab steepening and break-off beneath a subduction accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey; Geophys. Res. Lett. 30 8046–8050.

    Google Scholar 

  • Keskin M 2007 Eastern Anatolia: A hot spot in a collision zone without a mantle pluma; In: Plates, Plumes and Planetary Processes (eds) Foulger G R and Jurdy D, Geol. Soc. Am. Spec. Publ. 430 693–722.

  • Ketin İ 1977 Van Gölü ile Iran sınırı arasındaki bölgede yapılan jeoloji gözlemlerinin sonuçları hakkında kısa bir açıklama; Türk. Jeol. Kur. Bült. 20 79–85 (in Turkish).

    Google Scholar 

  • Lightfoot P and Hawkesworth C 1988 Origin of Deccan Trap lavas: Evidence from combined trace element and Sr-, Nd and Pb-isotope studies; Earth Planet. Sci. Lett. 91(1–2) 89–104.

    Google Scholar 

  • Li X W, Mo X X, Huang X F, Dong G C, Yu X H, Luo M F and Liu Y B 2015 U–Pb zircon geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: Petrogenesis and geodynamic implications; J. Asian Earth Sci. 97 38–50.

    Google Scholar 

  • Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G and Chen H H 2008 In-situ analysis of major and trace elements of anhydrous minerals by LAICP-MS without applying an internal standard; Chem. Geol. 257(1) 34–43.

  • Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B 2010a Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths; J. Petrol. 51(1–2) 537–571.

    Google Scholar 

  • Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J and Chen H H 2010b Re-appraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS; Chin. Sci. Bull. 55(15) 1535–1546.

    Google Scholar 

  • Ludwig K R 2001 A User’s Manual; Berkely: Berkely Geoch. Cent. Spec. Publ. 2001 1–35.

    Google Scholar 

  • Maniar P D and Piccoli P M 1989 Tectonic discrimination of granitoids; Geol. Soc. Am. Bull. 101 635–643.

    Google Scholar 

  • Miller C F 1985 Are strongly peraluminous magmas derived from pelitic sedimentary sources? J. Geol. 93 673–689.

    Google Scholar 

  • Oyan V, Keskin M, Lebedev V A, Chugaev A V and Sharkov E V 2016 Magmatic evolution of the Early Pliocene Etrüsk stratovolcano, Eastern Anatolian Collision Zone, Turkey; Lithos 256–257 88–108.

    Google Scholar 

  • Oyan V 2017 Ar–Ar dating and petrogenesis of the Early Miocene Taşkapı–Mecitli (Erciş–Van) granitoid, Eastern Anatolia Collisional Zone, Turkey; J. Asian Earth Sci. 158 210–226.

    Google Scholar 

  • Özdemir Y, Karaoğlu Ö, Tolluoğlu A Ü and Güleç N 2006 Volcano stratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): The most recent post-collisional volcanism in Turkey; Chem. Geol. 226(3–4) 189–211.

    Google Scholar 

  • Pearce J A, Harris N B W and Tindle A G W 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks; J. Petrol. 25 956–983.

    Google Scholar 

  • Pearce J A and Peate D W 1995 Tectonic implication of the composition of volcanic arc magmas; Ann. Rev. Earth Planet. Sci. 23 251–285.

    Google Scholar 

  • Peccerillo A and Taylor S R 1976 Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey; Contrib. Mineral. Petrol. 58 63–81.

    Google Scholar 

  • Perinçek D 1980 Bitlis metamorfitlerinde volkanitli Triyas; Türk. Jeol. Kur. Bült. 23 201–211 (in Turkish).

    Google Scholar 

  • Perugini D and Poli G 2000 Chaotic dynamics and fractals in magmatic interaction processes: A different approach to the interpretation of mafic microgranular enclaves; Earth Planet. Sci. Lett. 175 93–103.

    Google Scholar 

  • Petro W L, Vogel T A and Wilband J T 1979 Major-element chemistry of plutonic rock suites from compressional and extensional plate boundaries; Chem. Geol. 26 217–235.

    Google Scholar 

  • Rolland Y 2017 Caucasus collisional history: Review of data from East Anatolia to West Iran; Gond. Res. 49, https://doi.org/10.1016/j.gr.2017.05.005.

    Article  Google Scholar 

  • Rollinson H 1993 Using Geochemical Data; New York, NY, John Wiley and Sons, Inc., 352p.

    Google Scholar 

  • Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust: A lower crustal perspective; Rev. Geophys. 33 267–309.

    Google Scholar 

  • Rudnick R L and Gao S 2003 Composition of the Continental Crust; Holland & Turekian, 64p.

  • Rudnick R L and Gao S 2014 Composition of the Continental Crust; Holland & Turekian, 51p.

  • Singh S, Mukherjee P K, Jain A K, Khanna P P, Saini N K and Kumar R 2002 Source characterization and possible emplacement mechanism of collision-related Gangotri Leucogranite along Bhagirathi Valley, NW-Himalaya; In: Granitoids of the Himalayan Collisional Belt (ed.) Singh S, J. Virt. Exp. 11 15–27.

  • Slama J, Kosler J, Condon D J, Crowley J L, Gerdes A and Hanchar J M 2008 Plesovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis; Chem. Geol. 249(1–2) 1–35.

    Google Scholar 

  • Sun S S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; In: Magmatism in Ocean Basins (eds) Saunders A D and Norry M J, Geol. Soc. Lond. Spec. Publ. 42 313–345.

  • Şaroğlu F and Yılmaz Y 1986 Geological evolution and basin models during the neotectonic episode in the eastern Anatolia; Bull. Miner. Res. Exp. 107 61–83.

    Google Scholar 

  • Şengör A M C and Kidd W S F 1979 The post-collisional tectonics of the Turkish–Iranian Plateau and a comparison with Tibet; Tectonophys. 55 361–376.

    Google Scholar 

  • Şengör A M C and Yılmaz Y 1981 Tethyan evolution of Turkey: A plate tectonic approach; Tectonophys. 75 181–241.

    Google Scholar 

  • Şengör A M C, Özeren S, Genc T and Zor E 2003 East Anatolian high plateau as a mantle-supported, north–south shortened domal structure; Geophys. Res. Lett. 30(24) 8045.

    Google Scholar 

  • Şengör A M C, Özeren M S, Keskin M, Sakınç M, Özbakır A D and Kayan I 2008 Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens; Earth Sci. Rev. 90 1–48.

    Google Scholar 

  • Taylor S R and McLennant S M 1985 The Continental Crust: Its Composition and Evolution; Blackwell, Oxford.

    Google Scholar 

  • Turgut İ K 2017 Mineralogical–petrographical investigation of the outcrop rocks around Şekerbulak (Diyadin–Ağrı); M.S. Thesis, Van Yüzüncü Yıl University, Van, Turkey, 88p.

  • Wang T, Tong Y, Zhang L, Li S, Huang H, Zhang J J, Guo L, Yang D D, Hong D W and Donskaya T 2017 Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance; J. Asian Earth Sci. 145 368–392.

    Google Scholar 

  • Whalen J B, Currie K L and Chappell B W 1987 A-type granites: Geochemical characteristics and discrimination; Contrib. Mineral. Petrol. 95 420–436.

    Google Scholar 

  • White A J R and Chappell B W 1988 Some supracrustal (S-type) granites of the Lachlan Fold Belt; Trans. R. Soc. Edinb. Earth Sci. 79 169–181.

    Google Scholar 

  • Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli P M, Rhede D, Satoh H, Schulz–Dobrick B, Skår Ø, Spicuzza M J, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q and Zheng Y F 2004 Further characterization of the 91500 zircon crystal; Geol. Geoanal. Res. 28 9–39.

    Google Scholar 

  • Wu F Y, Jahn B M, Wilde S A, Lo C H, Yui T F, Lin Q, Ge W C and Sun D Y 2003 Highly fractionated I-type granites in NE China (I): Geochronology and petrogenesis; Lithos 66 241–273.

    Google Scholar 

  • Yeşilova Ç, Yeşilova P G and Açlan M 2015 Dereiçi (Başkale, Van) Travertenlerinin Fasiyes Analizi. 68. Türkiye Jeoloji Kurultayı, Ankara, Türkiye, pp. 576–577.

  • Yeşilova P G, Gökmen D and Yeşilova Ç 2017 Orta–geç Miyosen Koluz üyesi jipsli birimlerinin paleocoğrafik evrimi ile birlikte sedimantolojik parametreler, Doğu Anadolu Bölgesi (KD Van): Neotetis okyanusunun kapanması ile ilgili bir iç havza; Sedimantoloji çalışma grubu, Rize, Türkiye, 14–17 Eylül 2017, 30–31.

  • Yılmaz Y, Yiğitbaş E and Genç S C 1993 Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt; Tectonics 12 1280–1297.

    Google Scholar 

  • Zen E A 1986 Aluminium enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints; J. Petrol. 27 1095–1117.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tamer Rızaoğlu and Ze Liu for their help in zircon U–Pb dating. This research has been funded by Scientific Research Projects Office of Van Yüzüncü Yıl University–Van/Turkey (YYU–BAP, Project No: 2010–YL 145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Açlan.

Additional information

Communicated by Rajneesh Bhutani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Açlan, M., Turgut, İ.K. Zircon U–Pb ages and geochemistry of granitoid from the southwest part of the Taşlıçay batholith: Implications for Neotethyan closure in Eastern Anatolia, Turkey. J Earth Syst Sci 129, 183 (2020). https://doi.org/10.1007/s12040-020-01445-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01445-6

Keywords

Navigation