Skip to main content

Advertisement

Log in

The interaction between MALAT1 target, miR-143-3p, and RALGAPA2 is affected by functional SNP rs3827693 in breast cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

A higher expression of MALAT1 has been reported in breast cancer. However, more studies are needed to decipher the mechanisms by which this lncRNA imposes its oncogenic effects. In this study, blood and tissue samples were taken from healthy normal and breast cancer subjects. qPCR was used to analyze the gene expression. HRM-PCR method was carried out to genotype the selected samples. Computational analysis was recruited to find novel targets of MALAT1 and miR-143-3p. The data analyses revealed that MALAT1 was up-regulated in breast cancer and could be a distinctive factor to diagnose cancer. The expression of MALAT1 was inversely correlated with miR-143-3p expression in the studied clinical samples. The down-regulation of miR-143-3p was proven in the clinical tumor samples as compared to the healthy controls. A negative correlation of miR-143-3p with its putative target, RALGAPA2 was observed. A functional SNP rs3827693 located within the 3′UTR region of RALGAPA2 mRNA was validated in this study to associate with breast cancer risk. The rs3827693 allele G significantly decreased the breast cancer incidence and augmented the negative correlation between RALGAPA2 and miR-143-3p, presumably through strengthening the interaction between these two transcripts. This study proposed MALAT1 miR-143-3p and miR-143-3p RALGAPA2 axis in breast cancer, whereby the latter can be altered by the clinically functional SNP rs3827693.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Espinosa E, Gámez-Pozo A, Sánchez-Navarro I, Pinto A, Castaneda C, Ciruelos E, et al. The present and future of gene profiling in breast cancer. Cancer Metastasis Rev. 2012;31(1–2):41–6.

    Article  CAS  PubMed  Google Scholar 

  2. Kao J, Salari K, Bocanegra M, Choi Y-L, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PloS One. 2009;4(7):1–16.

    Article  CAS  Google Scholar 

  3. Van’t Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  4. van de Vijver M. Gene-expression profiling and the future of adjuvant therapy. Oncol Miamisburg. 2005;10:30.

    Article  Google Scholar 

  5. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res. 2009;7(1–2):4–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van de Ven S, Smit V, Dekker T, Nortier J, Kroep J. Discordances in ER, PR and HER2 receptors after neoadjuvant chemotherapy in breast cancer. Cancer Treat Rev. 2011;37(6):422–30.

    PubMed  Google Scholar 

  7. Andorfer CA, Necela BM, Thompson EA, Perez EA. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med. 2011;17(6):313–9.

    Article  CAS  PubMed  Google Scholar 

  8. Shi M, Guo N. MicroRNA expression and its implications for the diagnosis and therapeutic strategies of breast cancer. Cancer Treat Rev. 2009;35(4):328–34.

    Article  CAS  PubMed  Google Scholar 

  9. Mashhadizadeh S, Tavangar M, Javani AF, Rahimian MD, Azadeh M, Tabatabaeian H, et al. PGR and TUG1 overexpression: a putative diagnostic biomarker in breast cancer patients. Gene Rep. 2020;21:100791.

    Article  Google Scholar 

  10. Balmeh N, Tabatabaeian H, Asgari M, Mokhtarian R, Abharian PH, Azadeh M, et al. miR-195 down-regulation is a distinctive biomarker of HER2 positive state in breast cancer. Gene Rep. 2020;20:100703.

    Article  Google Scholar 

  11. Mahdi KM, Nassiri MR, Nasiri K. Hereditary genes and SNPs associated with breast cancer. Asian Pac J Cancer Prev. 2013;14(6):3403–9.

    Article  PubMed  Google Scholar 

  12. DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding-Sauer A, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–51.

    Article  PubMed  Google Scholar 

  13. Gutschner T, Hämmerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med. 2013;91(7):791–801.

    Article  CAS  PubMed  Google Scholar 

  14. Miao Y, Fan R, Chen L, Qian H. Clinical significance of long non-coding RNA MALAT1 expression in tissue and serum of breast cancer. Ann Clin Lab Sci. 2016;46(4):418–24.

    CAS  PubMed  Google Scholar 

  15. Jadaliha M, Zong X, Malakar P, Ray T, Singh DK, Freier SM, et al. Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget. 2016;7(26):40418.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chou J, Wang B, Zheng T, Li X, Zheng L, Hu J, et al. MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochem Biophys Res Commun. 2016;472(1):262–9.

    Article  CAS  PubMed  Google Scholar 

  17. Latorre E, Carelli S, Raimondi I, D'Agostino V, Castiglioni I, Zucal C, et al. The ribonucleic complex HuR-MALAT1 represses CD133 expression and suppresses epithelial–mesenchymal transition in breast cancer. Can Res. 2016;76(9):2626–36.

    Article  CAS  Google Scholar 

  18. Bamodu OA, Huang W-C, Lee W-H, Wu A, Wang LS, Hsiao M, et al. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. BMC Cancer. 2016;16(1):160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(D1):D92–D9797.

    Article  CAS  PubMed  Google Scholar 

  20. Lánczky A, Nagy Á, Bottai G, Munkácsy G, Szabó A, Santarpia L, et al. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat. 2016;160(3):439–46.

    Article  PubMed  CAS  Google Scholar 

  21. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4:e05005.

    Article  PubMed Central  Google Scholar 

  22. Gong J, Tong Y, Zhang H-M, Guo A-Y, editors. miRNASNP: a database of miRNA related SNPs and their effects on miRNA function. BMC Bioinform. 2012;13(18):1.

  23. Sadeghi S, Hojati Z, Tabatabaeian H. Cooverexpression of EpCAM and c-myc genes in malignant breast tumours. J Genet. 2017;96(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  24. Tabatabaeian H, Hojati Z. Assessment of HER-2 gene overexpression in Isfahan province breast cancer patients using real time RT-PCR and immunohistochemistry. Gene. 2013;531(1):39–433.

    Article  CAS  PubMed  Google Scholar 

  25. Tabatabaeian S, Sadeghi S, Tabatabaeian H. PTBP1 correlates with HER2 positivity, lymph node spread and metastasis in breast cancer. Gene Rep. 2020;19:100659.

    Article  Google Scholar 

  26. Yu K, Toral-Barza L, Discafani C, Zhang W, Skotnicki J, Frost P, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer. 2001;8(3):249–58.

    Article  PubMed  Google Scholar 

  27. Gil EMC. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev. 2014;40(7):862–71.

    Article  CAS  Google Scholar 

  28. Tabatabaeian H, Rao A, Ramos A, Chu T, Sudol M, Lim YP. The emerging roles of WBP2 oncogene in human cancers. Oncogene. 2020;39:1–15.

    Article  CAS  Google Scholar 

  29. Wellenstein MD, Coffelt SB, Duits DE, van Miltenburg MH, Slagter M, de Rink I, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature. 2019;572(7770):538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Golmard L, Delnatte C, Laugé A, Moncoutier V, Lefol C, Abidallah K, et al. Breast and ovarian cancer predisposition due to de novo BRCA1 and BRCA2 mutations. Oncogene. 2016;35(10):1324–7.

    Article  CAS  PubMed  Google Scholar 

  31. Shamloo B, Usluer S. p21 in cancer research. Cancers. 2019;11(8):1178.

    Article  CAS  PubMed Central  Google Scholar 

  32. Ghahnavieh LE, Tabatabaeian H, Ghahnavieh ZE, Honardoost MA, Azadeh M, Bistgani MM, et al. Fluctuating expression of miR-584 in primary and high-grade gastric cancer. BMC Cancer. 2020;20(1):1–12.

    Article  CAS  Google Scholar 

  33. Rouigari M, Dehbashi M, Tabatabaeian H, Ghaedi K, Mohammadynejad P, Azadeh M. Evaluation of the expression level and hormone receptor association of miR-126 in breast cancer. Indian J Clin Biochem. 2019;34(4):451–7.

    Article  CAS  PubMed  Google Scholar 

  34. Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, et al. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017;8(9):e3045-e.

    Article  Google Scholar 

  35. Adami B, Tabatabaeian H, Ghaedi K, Talebi A, Azadeh M, Dehdashtian E. miR-146a is deregulated in gastric cancer. J Cancer Res Ther. 2019;15(1):108.

    CAS  PubMed  Google Scholar 

  36. Dehdashtian E, Tabatabaeian H, Ghaedi K, Talebi A, Adami BAH. pylori-independent miR-21 overexpression in gastric cancer patients. Gene Rep. 2019;17:100528.

    Article  Google Scholar 

  37. Xue X, Yang YA, Zhang A, Fong K, Kim J, Song B, et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene. 2016;35(21):2746–55.

    Article  CAS  PubMed  Google Scholar 

  38. Xu S, Kong D, Chen Q, Ping Y, Pang D. Oncogenic long noncoding RNA landscape in breast cancer. Mol Cancer. 2017;16(1):129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yoshimoto R, Mayeda A, Yoshida M, Nakagawa S. MALAT1 long non-coding RNA in cancer. Biochimica et Biophysica Acta (BBA) Gene Regul Mech. 2016;1859(1):192–9.

    Article  CAS  Google Scholar 

  40. Wang Z, Katsaros D, Biglia N, Shen Y, Fu Y, Loo LW, et al. High expression of long non-coding RNA MALAT1 in breast cancer is associated with poor relapse-free survival. Breast Cancer Res Treat. 2018;171(2):261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li D, Hu J, Song H, Xu H, Wu C, Zhao B, et al. miR-143-3p targeting LIM domain kinase 1 suppresses the progression of triple-negative breast cancer cells. Am J Transl Res. 2017;9(5):2276.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xia C, Yang Y, Kong F, Kong Q, Shan C. MiR-143-3p inhibits the proliferation, cell migration and invasion of human breast cancer cells by modulating the expression of MAPK7. Biochimie. 2018;147:98–104.

    Article  CAS  PubMed  Google Scholar 

  43. Pinweha P, Phillips CA, Gregory PA, Li X, Chuayboonya P, Mongkolsiri P, et al. MicroRNA-143-3p targets pyruvate carboxylase expression and controls proliferation and migration of MDA-MB-231 cells. Arch Biochem Biophys. 2019;677:108169.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Wang Z, Chen M, Peng L, Wang X, Ma Q, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Mol Cancer. 2012;11(1):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yan X, Chen X, Liang H, Deng T, Chen W, Zhang S, et al. miR-143 and miR-145 synergistically regulate ERBB3 to suppress cell proliferation and invasion in breast cancer. Mol Cancer. 2014;13(1):220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ng EK, Li R, Shin VY, Siu JM, Ma ES, Kwong A. MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumor Biol. 2014;35(3):2591–8.

    Article  CAS  Google Scholar 

  47. Bodemann BO, White MA. Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer. 2008;8(2):133–40.

    Article  CAS  PubMed  Google Scholar 

  48. Saito R, Shirakawa R, Nishiyama H, Kobayashi T, Kawato M, Kanno T, et al. Downregulation of Ral GTPase-activating protein promotes tumor invasion and metastasis of bladder cancer. Oncogene. 2013;32(7):894–902.

    Article  CAS  PubMed  Google Scholar 

  49. Salimi Z, Sadeghi S, Tabatabaeian H, Ghaedi K, Fazilati M. rs11895168 C allele and the increased risk of breast cancer in Isfahan population. Breast. 2016;28:89–94.

    Article  PubMed  Google Scholar 

  50. Dehghan Z, Sadeghi S, Tabatabaeian H, Ghaedi K, Azadeh M, Fazilati M, et al. ESR1 single nucleotide polymorphism rs1062577 (c.* 3804T> A) alters the susceptibility of breast cancer risk in Iranian population. Gene. 3804T;611:9–14.

    Article  CAS  PubMed  Google Scholar 

  51. Zabihi N, Sadeghi S, Tabatabaeian H, Ghaedi K, Azadeh M, Fazilati M. The association between rs1972820 and the risk of breast cancer in Isfahan population. J Cancer Res Ther. 2017;13(1):26.

    Article  CAS  PubMed  Google Scholar 

  52. Moradi B, Tabatabaeian H, Sadeghi S, Azadeh M, Ghaedi K. HER4 rs1595065 3′UTR variant is a possible risk factor for HER2 positivity among breast cancer patients. Thrita. 2016;5(4):1–5.

    Article  CAS  Google Scholar 

  53. Nabatchian F, Naiini MR, Moradi A, Tabatabaeian H, Hoghoughi N, Azadeh M, et al. miR-581-related single nucleotide polymorphism, rs2641726, located in MUC4 gene, is associated with gastric cancer incidence. Indian J Clin Biochem. 2019;34(3):347–51.

    Article  CAS  PubMed  Google Scholar 

  54. Bidkani MM, Tabatabaeian H, Parsafar S, Ghanei N, Fazilati M, Ghaedi K. ErbB4 receptor polymorphism 2368A> C and risk of breast cancer. Breast. 2368A;42:157–63.

    Article  Google Scholar 

  55. Tabatabian M, Tanha HM, Tabatabaeian H, Sadeghi S, Ghaedi K, Mohamadynejad P. ErbB4 3′-UTR variant (c.* 3622A> G) is associated with ER/PR negativity and advanced breast cancer. Indian J Clin Biochem. 3622A;35(1):115–20.

    Article  PubMed  Google Scholar 

  56. Samani LA, Javadirad S-M, Parsafar S, Tabatabaeian H, Ghaedi K, Azadeh M. TP53 rs1625895 is related to breast cancer incidence and early death in Iranian population. Indian J Clin Biochem. 2019;34(4):485–9.

    Article  CAS  Google Scholar 

  57. Mokhtarian R, Tabatabaeian H, Saadatmand P, Azadeh M, Balmeh N, Yakhchali B, et al. CD44 gene rs8193 C allele is significantly enriched in gastric cancer patients. Cell J (Yakhteh). 2020;21(4):451.

    Google Scholar 

Download references

Acknowledgements

We would like to greatly appreciate the donors of blood and tissue donors of this study.

Funding

This research was financially supported by Zist-fanavari Novin Biotechnology Institute, Isfahan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Tabatabaeian or Kamran Ghaedi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in this study involving human participants were in accordance with the ethical standards of the Ethics Committee of Isfahan University of Medical Sciences (approval number: 3838988), regarding 64th World Medical Association General Assembly of Helsinki declaration amended in October 2013..

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi Dolatabadi, N., Dehghani, A., Shahand, E. et al. The interaction between MALAT1 target, miR-143-3p, and RALGAPA2 is affected by functional SNP rs3827693 in breast cancer. Human Cell 33, 1229–1239 (2020). https://doi.org/10.1007/s13577-020-00422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00422-x

Keywords

Navigation