Skip to main content
Log in

Kinetics and Energetics of High-Temperature Pyrolysis of Highly Filled Elastomers

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

Based on an analysis and generalization of the results of theoretical and experimental studies of the basic laws of physicochemical transformations that occur in highly filled elastomers upon heating, a differential mathematical model of the kinetics and energy of the pyrolysis process of these materials is formulated. A distinctive feature of the model is the inclusion of changes in the composition of the material during heating to high temperatures, as well as the influence of the heating rate on the process parameters. The results of numerical studies are in satisfactory agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. In experimental studies of the pyrolysis of highly filled elastomers, O.S. Vodolazsky, G.G. Konkina and G.V. Malkov took part.

  2. Near temperature T*, the processes of chemical and phase transformation merge into a single, one-stage process of the chemophase transformation of the polymer, accompanied by the initial transfer of sufficiently large blocks (oligomers) into the gas phase and the course of further destruction reactions already in it [15, 16].

  3. In experimental studies of the behavior of a typical rubber-like material when heated under pressure A.N. Garashchenko, V.F. Kablov, and V.G. Kochetkov [17].

  4. Hereinafter, for the corresponding parameters, we use the notation adopted in [10].

REFERENCES

  1. Mikhailin, Yu.A., Spetsial’nye polimernye kompozitsionnye materialy (Special Polymer Composites), St. Petersburg: Nauchnye Osnovy Tekhnol., 2008.

  2. Bhuvaneswari, C.M., Sureshkumar, M.S., Kakade, S.D., and Gupta, M., Def. Sci. J., 2006, vol. 56, no. 3, p. 309.

    Article  Google Scholar 

  3. Ahmed, A.F. and Hoa, S.V., J. Compos. Mater., 2012, vol. 46, no. 13, p. 1544.

    Article  Google Scholar 

  4. Singh Sangita, Guchhait, P.K., Singha, N.K., and Chaki, T.K., Epdm nanocomposites using polyimide as ablator: morphology and thermophysical properties, Am. J. Macromol. Sci., 2014.

  5. Kablov, V.F., Keibal, N.A., Novopol’tseva, O.M., Rudenko, K.Yu., and Motchenko, A.Yu., RF Patent 2637932, Byull. Izobret., 2017, no. 34.

  6. Polezhaev, Yu.V. and Yurevich, F.B., Teplovaya zashchita (Thermal Protection), Moscow: Energiya, 1976.

  7. Pankratov, B.M., Polezhaev, Yu.V., and Rud’ko, A.K., Vzaimodeistvie materialov s gazovymi potokami (Interaction of Materials with Gas Flows), Moscow: Mashinostroenie, 1976.

  8. Strakhov, V.L. and Kuz’min, I.A., in Mekhanika i protsessy upravleniya: Mater. XXXXIV Vseros. simp. (Mechanics and Control Processes: Proc. XXXXIV All-Russian Symp.), Moscow: Ross. Akad. Nauk, 2014, vol. 1, p. 87.

  9. Strakhov, V.L., Kul’kov, A.A., and Kuz’min, I.A., in Novye tekhnologii, Mater. XII Vseros. konf., posvyashchennoi 70-letiyu Pobedy (New Technologies: Proc. XII All-Russian Conf. Dedicated to the 70th Anniversary of Victory), Moscow: Ross. Akad. Nauk, 2015, vol. 1, p. 3.

  10. Strakhov, V.L., Atamanov, Yu.M., Kuz’min, I.A., and Bakulin, V.N., High Temp., 2017, vol. 55, no. 4, p. 515.

    Article  Google Scholar 

  11. Strakhov, V.L., Kuz’min, I.A., and Bakulin, V.N., High Temp., 2019, vol. 57, no. 2, p. 250.

    Article  Google Scholar 

  12. Shlenskii, O.F., High Temp., 2008, vol. 46, no. 3, p. 425.

    Article  Google Scholar 

  13. Vyazovkin, S. and Linert, W., Chem. Phys., 1995, vol. 193, p. 109.

    Article  Google Scholar 

  14. Khawam, A. and Flanagan, D.R., J. Phys. Chem., 2006, vol. 110, p. 17315.

    Article  Google Scholar 

  15. Shlenskii, O.F., Gorenie i vzryv materialov. Novye aspekty (Combustion and Explosion of Materials: New Aspects), Moscow: Innovats. Mashinostr., 2015, 3rd ed.

  16. Termicheskii i okislitel’nyi piroliz topliv i vysokopolimernykh materialov (Thermal and Oxidative Pyrolysis of Fuels and High Polymer Materials), Farberov, I.L. and Bogdanov, I.F., Eds., Moscow: Nauka, 1966.

    Google Scholar 

  17. Garashchenko, A.N., Strakhov, V.L., Kablov, V.F., and Kochetkov, V.G., Vopr. Oboronnoi Tekh., Ser. 15, 2017, no. 2, p. 18.

  18. Lide, D.R., CRC Handbook of Chemistry and Physics, Boca Raton: CRC, 2004, 85th ed.

    Google Scholar 

  19. Gurvich, L.V., Khachkuruzov, G.A., Medvedev, V.A., et al., Termodinamicheskie svoistva individual’nykh veshchestv. Spravochnoe izdanie (Thermodynamic Properties of Individual Substances: A Reference Edition), 4 vols., Moscow: Akad. Nauk SSSR, 1962, vol. 2.

  20. Alifanov, O.M., Artyukhin, E.A., and Rumyantsev, S.V., Ekstremal’nye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena (Extreme Methods for Solving Ill-Posed Problems and Their Application to Inverse Heat Transfer Problems), Moscow: Nauka, 1988.

  21. Mironov, V.V. and Tolkach, M.A., High Temp., 2019, vol. 57, no. 2, p. 242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Strakhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strakhov, V.L., Kaledin, V.O. & Kulkov, A.A. Kinetics and Energetics of High-Temperature Pyrolysis of Highly Filled Elastomers. High Temp 58, 417–425 (2020). https://doi.org/10.1134/S0018151X20030189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20030189

Navigation