Skip to main content
Log in

Heat-Resistance Tests of High-Temperature Composite Materials via Laser Heating in a Supersonic Flow

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A method is proposed for the study of the heat resistance of samples of high-temperature composite materials via local laser heating of their surface in a supersonic flow. The performed studies allow the strategic selection of high-temperature materials based on the intensity of erosion with simultaneous laser and gasdynamic effects. The ablation rates of composite materials were experimentally determined at implemented surface temperatures of 2100–2300 K and blowing with a supersonic flow at a Mach number M = 2. The effect of the various additive materials, including carbides and oxides of Hf, Si, Ta, and Zr, on the ablation rate was studied. The data can be used as recommendations in the selection of formulations for high-temperature composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Vlasenko, A.V., Skryabin, V.V., and Evtif’ev, M.D., Abstracts of Papers, XII Mezhdun. nauch.-prakt. konf. “Aktual’nye problemy aviatsii i kosmonavtiki” (XII Int. Sci.-Pract. Conf. on Actual Problems of Aviation and Astronautics), Krasnoyarsk: Sib. Gos. Aerokosm. Univ., 2016, vol. 1, p. 71.

  2. Potapov, A.M., Kosm. Nauka Tekhnol., 2015, vol. 21, no. 5, p. 69.

    Article  Google Scholar 

  3. Levashov, E.A., Pogozhev, Yu.S., Vorotylo, S., and Kurbatkina, V.V., Abstracts of Papers, Mezhdun. nauch. konf. “Sovremennye materialy i peredovye proizvodstvennye tekhnologii (SMPPT-2019)” (Int. Sci. Conf. on Modern Materials and Advanced Manufacturing Technologies), St. Petersburg: Politekh-Press, 2019, p. 61.

  4. Zabakin, V.A., Prokhorov, A.N., and Tretyakov, P.K., Thermophys. Aeromech., 2015, vol. 22, no. 2, p. 257.

    Article  ADS  Google Scholar 

  5. Kablov, E.N., Zhestkov, B.E., Grashchenkov, D.V., Sorokin, O.Yu., Lebedeva, Yu.E., and Vaganova, M.L., High Temp., 2017, vol. 55, no. 6, p. 873.

    Article  Google Scholar 

  6. Vaganova, M.L., Shchegoleva, N.E., and Grashchenkov, D.V., in Vse materialy. Entsiklopedicheskii spravochnic (All Materials: Encyclopedic Reference Book), Moscow, 2013, no. 5, p. 8.

  7. Nizovtsev, V.E., in Dokl. konf. “Sovremennye vysokotemperaturnye kompozitsionnye materialy i pokrytiya” (Proc. Conf. on Modern High-Temperature Composite Materials and Coatings), Moscow: Vseross. Inst. Aviats. Mater., 2013.

  8. Kopylov, A.V., Konstr. Kompoz. Mater., 2013, no. 4, p. 49.

  9. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., and Solntsev, S.S., Ross. Khim. Zh., 2010, vol. 54, no. 1, p. 20.

    Google Scholar 

  10. Sorokin, O.Yu., Grashchenkov, D.V., Solntsev, S.S., and Evdokimov, S.A., Tr.VIAM, 2014, no. 6, p. 8.

  11. Degtyar’, V.G. and Son, E.E., Giperzvukovye letatel’nye apparaty (Hypersonic Aircraft), Moscow: Yanus-K, 2016, vol. 1.

  12. Martin, A. and Boyd, I.D., Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation, AIAA Paper no. 2009-3597, 2009.

  13. Astapov, A.N., Lifanov, I.P., and Rabinskii, L.N., High Temp., 2019, vol. 55, no. 5, p. 744.

    Article  Google Scholar 

  14. Goryachev, S.V., Isakaev, E.Kh., Myasnikov, M.I., and Chinnov, V.F., High Temp., 2008, vol. 46, no. 6, p. 752.

    Article  Google Scholar 

  15. Izluchatel’nye svoistva tverdykh materialov (Radiative Properties of Solid Materials), Sheindlin, A.E., Ed., Moscow: Energiya, 1974.

    Google Scholar 

  16. Toro, E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Berlin: Springer, 2009.

    Book  Google Scholar 

  17. Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic flows, AIAA Paper no. 92-0439, 1992.

  18. Liou, M.-S., J. Comput. Phys., 2006, vol. 214, no. 1, p. 137.

    Article  ADS  MathSciNet  Google Scholar 

  19. Samsonov, G.V. and Vinitskii, I.M., Tugoplavkie soedineniya. Spravochnik (Refractory Compounds: A Handbook), Moscow: Metallurgiya, 1976.

Download references

Funding

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (unique identifier of PNIER RFMEFI60719X0323).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Yu. Aref’ev or S. V. Kruchkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’ev, K.Y., Kruchkov, S.V., Glushneva, A.V. et al. Heat-Resistance Tests of High-Temperature Composite Materials via Laser Heating in a Supersonic Flow. High Temp 58, 393–399 (2020). https://doi.org/10.1134/S0018151X20030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20030025

Navigation