Skip to main content
Log in

Thermodynamic Estimation of the Stability of Metal and Ceramic Materials in the Binary Sn–20% Li Melt

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The temperature dependences of nickel, iron, chromium, molybdenum, and tungsten solubility in a liquid Sn–20% Li alloy are calculated with the thermodynamic simulation method based on information on the excess Gibbs mixing energies for a liquid phase in the form of polynomial Redlich–Kister expansion for corresponding binary systems. A thermodynamic estimation of the stability of a series of binary and ternary oxides in a liquid Li20Sn80 alloy at temperatures of 500 and 800°C is also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Superscript SER represents “standard element reference.”

  2. Atoms in the melt constantly move; therefore, it makes sense to consider a short-lived atomic configuration averaged for some time t. For these configurations, a reasonable estimate of the averaging time is in the range of τ0 < t < τD0 is the atomic vibration period in the equilibrium position and τD is the settled life time of the atom [32]). According to the data of [32], \({{\tau }_{{\text{0}}}} \approx {\text{1}}{{{\text{0}}}^{{ - {\text{13}}}}}\,\,{\text{s}}\) and \({{\tau }_{{\text{D}}}} \approx {\text{1}}{{{\text{0}}}^{{ - {\text{11}}}}}\,\,{\text{s}}{\text{.}}\)

REFERENCES

  1. Askhadullin, R.Sh., Martynov, P.N., Rachkov, V.I., et al., High Temp., 2016, vol. 54, no. 4, p. 564.

    Article  Google Scholar 

  2. Alchagirov, B.B. and Dyshekova, F.F., High Temp., 2016, vol. 54, no. 6, p. 815.

    Article  Google Scholar 

  3. Kruglov, A.B., Kruglov, V.B., Rachkov, V.I., et al., High Temp., 2015, vol. 53, no. 4, p. 564.

    Article  Google Scholar 

  4. Krasin, V.P. and Soyustova, S.I., High Temp., 2018, vol. 56, no. 4, p. 519.

    Article  Google Scholar 

  5. Tabarés, F.L., Oyarzabal, E., Martin-Rojo, A.B., Tafalla, D., de Castro, A., and Soleto, A., Nucl. Fusion, 2017, vol. 57, no. 1, 016029. https://doi.org/10.1088/0029-5515/57/1/016029

    Article  ADS  Google Scholar 

  6. Krasin, V.P. and Soyustova, S.I., High Temp., 2019, vol. 57, no. 2, p. 190.

    Article  Google Scholar 

  7. Weeks, J.R., Nucl. Eng. Des., 1971, vol. 15, p. 363.

    Article  Google Scholar 

  8. Fütterer, M.A., Aiello, G., Barbier, F., Giancarli, L., Poitevin, Y., Sardain, P., Szczepanski, J., Puma, A.L., Ruvutuso, G., and Vella, G., J. Nucl. Mater., 2000, vols. 283–287, p. 1375.

    Article  ADS  Google Scholar 

  9. Vertkov, A., Lyublinski, I., Zharkov, M., Mazzitelli, G., Apicella, M.L., and Iafrati, M., Fusion Eng. Des., 2017, vol. 117, p. 130.

    Article  Google Scholar 

  10. Binary Alloy Phase Diagrams, 3 vols., Massalski, T.B., Ed., Materials Park, OH: ASM Int., 1990.

    Google Scholar 

  11. Levchuk, D., Levchuk, S., Maier, H., Bolt, H., and Suzuki, A., J. Nucl. Mater., 2007, vols. 367–370, p. 1033.

    Article  ADS  Google Scholar 

  12. SGTE Unary Database, version 4.4, July 20, 2001. http://www.sgte.org.

  13. Redlich, E. and Kister, A.K., Ind. Eng. Chem., 1948, vol. 40, p. 345.

    Article  Google Scholar 

  14. Lukas, H., Fries, S.G., and Sundman, B., Computational Thermodynamics: The Calphad Method, Cambridge: Cambridge Univ. Press, 2007.

    Book  Google Scholar 

  15. Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams, New York: Academic, 1970.

    Google Scholar 

  16. Alpatov, A.V. and Paderin, S.N., Russ. Metall. (Engl. Transl.), 2009, vol. 2009, no. 5, p. 386.

  17. Morachevskii, A.G., Russ. J. Appl. Chem., 2015, vol. 88, p. 1087.

    Article  Google Scholar 

  18. eavenworth, H., Cleary, R.E., and Bratton, W.D., Solubility of structural metals in lithium, Tech. Rep. PWAC-356, Middletown, CT: Pratt and Whitney Aircraft, 1961

  19. Heuzey, M.C. and Pelton, A., Metall. Trans. B, 1996, vol. 27, p. 810.

    Article  Google Scholar 

  20. Lyublinski, I.E., Evtikhin, V.A., Pankratov, V.Yu., and Krasin, V.P., J. Nucl. Mater., 1995, vol. 224, no. 3, p. 288.

    Article  ADS  Google Scholar 

  21. Niessen, A.K., de Boer, F.R., and Miedema, A.R., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1983, vol. 7, no. 1, p. 51.

    Article  Google Scholar 

  22. Kawabata, R., Myochin, M., and Iwase, M., Metall. Trans. B, 1995, vol. 26, p. 654.

    Article  Google Scholar 

  23. Bale, C.W. and Pelton, A.D., Metall. Trans. B, 1983, vol. 14, p. 77.

    Article  Google Scholar 

  24. Brewer, L. and Lamoreaux, R.H., Bull. Alloy Phase Diagrams, 1980, vol. 1, no. 2, p. 96.

    Article  Google Scholar 

  25. Williams, M.E., Moon, K.W., Boettinger, W.J., Josell, D., and Deal, A.D., J. Electron. Mater., 2007, vol. 36, p. 214.

    Article  ADS  Google Scholar 

  26. Kubaschewski, O., Iron Binary Phase Diagrams, Heidelberg: Springer, 1982.

    Google Scholar 

  27. Venkatraman, M. and Neumann, J.P., Bull. Alloy Phase Diagrams, 1988, vol. 9, p. 161.

    Google Scholar 

  28. Pashechko, M.I. and Vasyliv, Kh.B., Mater. Sci., 1996, vol. 31, p. 485.

    Article  Google Scholar 

  29. O’Connell, J.P. and Prausnitz, J.M., Ind. Eng. Chem. Fundam., 1964, vol. 3, p. 347.

    Article  Google Scholar 

  30. Saboungi, M.-L., Caveny, D., Bloom, I., and Blander, M., Metall. Trans. A, 1987, vol. 18, p. 1779.

    Article  Google Scholar 

  31. Krasin, V.P., Soyustova, S.I., and Lyublinskii, I.E., Inorg. Mater.: Appl. Res., 2010, vol. 1, p. 324.

    Google Scholar 

  32. Ostrovskii, O.I., Grigoryan, V.A., and Vishkarev, A.F., Svoistva metallicheskikh rasplavov (Properties of Metal Melts), Moscow: Metallurgiya, 1988.

  33. Kondo, M., Ishii, M., and Muroga, T., Fusion Eng. Des., 2015, vols. 98–99, p. 2003.

    Article  Google Scholar 

  34. Shukla, N.K., Prasad, R., Roy, K.N., and Sood, D.D., J. Chem. Thermodyn., 1992, vol. 24, p. 897.

    Article  Google Scholar 

  35. Sharma, S. and Choudhary, R.P.N., Ferroelectrics, 1999, vol. 234, p. 129.

    Article  Google Scholar 

  36. Borgstedt, H.U. and Guminski, C., Monatsh. Chem., 2000, vol. 131, p. 917.

    Article  Google Scholar 

  37. Sample, T., Coen, V., Kolbe, H., and Orecchia, L., J. Nucl. Mater., 1992, vols. 191–194, p. 979.

    Article  ADS  Google Scholar 

  38. Schumacher, R. and Weiss, A., Ber. Bunsen-Ges. Phys. Chem., 1990, vol. 94, p. 684.

    Article  Google Scholar 

  39. Hubberstey, P., J. Nucl. Mater., 1997, vol. 247, p. 208.

    Article  ADS  Google Scholar 

  40. Krasin, V.P. and Soyustova, S.I., J. Nucl. Mater., 2015, vol. 465, p. 674.

    Article  ADS  Google Scholar 

  41. Fromm, E. and Gebhardt, E., Gase und Kohlenstoff in Metallen (Gases and Carbon in Metals), Berlin: Springer, 1976.

  42. Chase, M.W., J. Phys. Chem. Ref. Data, Monogr., 1951, monograph no. 9.

  43. Sharafat, S., Ghoniem, N., and Zinkle, S., J. Nucl. Mater., 2004, vol. 329-333, p. 1429.

    Article  ADS  Google Scholar 

  44. Du, Z., Jiang, Z., and Guo, C., Z. Metallkd., 2006, vol. 97, p. 10.

    Article  Google Scholar 

Download references

Funding

This study was performed within the basic part of a State assignment for the Moscow Polytechnic University, project no. FZRR-2020-0027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Krasin.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasin, V.P., Soyustova, S.I. Thermodynamic Estimation of the Stability of Metal and Ceramic Materials in the Binary Sn–20% Li Melt. High Temp 58, 342–351 (2020). https://doi.org/10.1134/S0018151X20030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20030104

Navigation