Skip to main content

Advertisement

Log in

Heat transfer during film condensation inside horizontal tubes in stratified phase flow

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, the experimental study of heat transfer during condensation of freons R22 and R407С in a plain smooth tube with 17 mm inner diameter was carried out at saturated condensing temperature 40 °C, while mass velocity ranged between 6 and 57 kg/(m2s) and vapour quality changed from 0.23 to 0.95. The unique measurements of circumferential heat fluxes and heat transfer coefficients were performed with the thick wall method during the stratified flow of the phases. The authors performed numerical simulation of heat transfer from condensing vapour to cooling water through the thick-walled cylindrical wall. The CFD model was validated by conducting the physical experiment, which indicated the results coincidence with an error from 7 to 20%. The obtained results allowed improving prediction of effective heat transfer coefficients for vapour condensation, which takes into account the influence of condensate flow in the bottom part of the tube on the heat transfer. This method generalizes with sufficient accuracy (error ± 30%) the experimental data on condensation of freons R22, R134a, R123, R125, R32, R410a, propane, isobutene, propylene, dimethyl ether, carbon dioxide and methane under the stratified flow conditions. Using this method for designing heat exchangers, which utilize such types of fluids, will increase the efficiency of thermal energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

A l :

– tube area that is flooded with condensate, [m2]

A ld :

– dimensionless tube area that is flooded with condensate

A v :

– tube area that is occupied by vapour, [m2]

A vd :

– dimensionless tube area that is occupied by vapour

c p :

– liquid specific heat, [J/(kgK)]

d :

– inner diameter of the tube, [m]

e :

– deviation, [%]

f i :

– interfacial roughness factor

Fr l :

– liquid Froude number (\( =\frac{{\left[G\left(1-x\right)\right]}^2}{\rho_l^2 gd} \))

G :

– mass velocity, [kg/(m2s)]

g :

– gravitational acceleration, [m/s2]

Ga :

– Galileo number (\( ={\rho}_l\left({\rho}_l-{\rho}_v\right){gd}^3/{\mu}_l^2 \))

h :

– heat transfer coefficient, [W/(m2K)]; enthalpy, [J/kg]

h l :

– liquid height, [m]

h ld :

– dimensionless liquid height

h lv :

– latent heat, [J/kg]

h v :

– heat transfer coefficient assuming total mass flowing as a vapour (\( =0.023{\operatorname{Re}}_v^{0.8}{\Pr}_v^{0.33}{k}_v/d \))

Ja l :

– liquid Jakob number (\( ={\rho}_l\left({\rho}_l-{\rho}_v\right){gd}^3/{\mu}_l^2 \))

k :

– thermal conductivity, [W/(mK)]

K w :

– correction factor

l :

– length of the tube, [m]

:

– characteristic length, (\( ={\left[{\mu}_l^2/\left({\rho}_l^2g\right)\right]}^{1/3} \))

Nu:

– Nusselt number (=hd/λl)

p :

– pressure, [Pa]

P l :

– wetted perimeter, [m]

Pr:

– Prandtl number

p r :

– reduced pressure (=ps/pcr)

q :

– heat flux, [W/m2]

R v :

– thermal resistance of the vapour phase

Re f :

– film Reynolds number (=ql/(hvlμl))

Re l :

– liquid Reynolds number (=G(1 − x)d/μl)

Re lo :

– Reynolds number assuming total mass flowing as a vapour (=Gd/μl)

Re v :

– vapour Reynolds number (=Gxd/μv)

Re vo :

– Reynolds number assuming total mass flowing as a vapour (=Gd/μv)

t :

– temperature, [°C]

u :

– axial velocity, [m/s]

x :

– vapour quality

X tt :

– Martinelli parameter (=(μl/μv)0.1(ρv/ρl)0.5[(1 − x)/x]0.9)

δ:

– thickness of the condensate film, [m]

ΔT :

– temperature difference (=ts-tw), [K]

ΔT g :

– temperature glide, [K]

Δh m :

– enthalpy of the mixture (=hl(1 − x) + hvx), [K]

ε :

– void fraction

θ :

– liquid level angle subtended from the bottom of the tube to the liquid level, [rad]

θ flood :

– angle of the tube flooding, [rad]

θ strat :

–stratified angle, [rad]

μ:

– dynamic viscosity, [Pa·s]

ν:

– kinematic viscosity, [m2/s]

ρ:

– density, [kg/m3]

σ:

– surface tension, [N/m]

aver :

– average

bot :

– bottom part of the tube

c :

– convective

calc :

– calculated

cr :

– critical

exp :

– experimental

f :

– film

flood :

– flooding

l :

– liquid

lo :

– corresponding to the entire flow as a liquid

m :

– mixture

s :

– saturated

st :

– steel

strat :

– stratified

top :

– top part of the tube

v :

– vapour

w :

– wall

References

  1. Rifert V, Sereda V, Solomakha A (2019) Heat transfer during film condensation inside plain tubes. Review of theoretical research. Heat Mass Transf 55(11):3041–3051. https://doi.org/10.1007/s00231-019-02636-8

    Article  Google Scholar 

  2. Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2020) Heat transfer during film condensation inside plain tubes. Review of experimental research. Heat Mass Transf 56(11):691–713. https://doi.org/10.1007/s00231-019-02744-5

    Article  Google Scholar 

  3. Thome J, El Hajal J, Cavallini A (2003) Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. Int J Heat Mass Transf 46(18):3365–3387. https://doi.org/10.1016/S0017-9310(03)00140-6

    Article  MATH  Google Scholar 

  4. Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C, Censi G (2006) Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. Heat Transf Eng 27(8):31–38. https://doi.org/10.1080/01457630600793970

    Article  Google Scholar 

  5. Shah M (2009) An improved and extended general correlation for heat transfer during condensation in plain tubes. Hvac & R Res 15(5):889–913. https://doi.org/10.1080/10789669.2009.10390871

    Article  Google Scholar 

  6. Shah M (2015) A new flow pattern based general correlation for heat transfer during condensation in horizontal tubes. Proceedings of the 15th international heat transfer conference IHTC-15, august 10–15, 2014, Kyoto, Japan. pp. 1–15

  7. Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2018) Substantiation and the range of application of a new method for heat transfer prediction in condensing inside plain tubes. ENERGETIKA 64(3):146–154. https://doi.org/10.6001/energetika.v64i3.3807

    Article  Google Scholar 

  8. Rifert V, Sereda V, Gorin V, Barabash P, Solomakha A (2018) Restoration of correctness and improvement of a model for film condensation inside tubes. Bulg Chem Commun 50(K):58–69

    Google Scholar 

  9. Rifert V, Gorin V, Sereda V, Treputnev V (2019) Improving methods to calculate heat transfer during the condensation inside tubes. J Eng Phys Thermophys 92:797–804. https://doi.org/10.1007/s10891-019-01988-6

    Article  Google Scholar 

  10. Numrich R, Müller J (2010) Filmwise condensation of pure vapors. VDI Heat Atlas, VDI-Gesellschaft Verfahrenstechnik und Chemieningenieurwesen, Springer, p. 905–918. https://doi.org/10.1007/978-3-540-77877-6

  11. Dorao C, Fernandino M (2018) Simple and general correlation for heat transfer during flow condensation inside plain pipes. Int J Heat Mass Transf 122:290–305. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.097

    Article  Google Scholar 

  12. Camaraza-Medina Y, Hernandez-Guerrero A, Luviano-Ortiz JL, Mortensen-Carlson K, Cruz-Fonticiella OM, García-Morales OF (2019) New model for heat transfer calculation during film condensation inside pipes. Int J Heat Mass Transf 128:344–353. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.012

    Article  Google Scholar 

  13. Nusselt W (1916) Die Oberflachenkondensation des Wasserdampfes. VDI-Zeitschrift 60:542–575

    Google Scholar 

  14. Shen S, Wang Y, Yuan D (2017) Circumferential distribution of local heat transfer coefficient during steam stratified flow condensation in vacuum horizontal tube. Int J Heat Mass Transf 114:816–825. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.042

    Article  Google Scholar 

  15. Singh A, Ohadi M, Dessiatoun S (1996) Empirical modeling of stratified-wavy flow condensation heat transfer in smooth horizontal tubes. ASHRAE Transac 102(2):596–603

    Google Scholar 

  16. Dobson M, Chato J (1998) Condensation in smooth horizontal tubes. J Heat Transf 120(1):193–213. https://doi.org/10.1115/1.2830043

    Article  Google Scholar 

  17. Macdonald M, Garimella S (2016) Hydrocarbon condensation in horizontal smooth tubes: part II–heat transfer coefficient and pressure drop modeling. Int J Heat Mass Transf 93:1248–1261. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.019

    Article  Google Scholar 

  18. Silver L (1947) Gas cooling with aqueous condensation. Trans Inst Chem Eng 25:30–42

    Google Scholar 

  19. Bell KJ, Ghaly MA (1973) An approximate generalised design method for multicomponent/partial condenser. AICHE Symp Ser 69:72–79

    Google Scholar 

  20. Rifert V, Sereda V, Barabash P, Gorin V (2017) Condensation inside smooth horizontal tubes: part 2. Improvement of heat exchange prediction. Therm Sci 21(3):1479–1489. https://doi.org/10.2298/TSCI140815045R

    Article  Google Scholar 

  21. Yang Z, Peng XF, Ye P (2008) Numerical and experimental investigation of two phase flow during boiling in a coiled tube. Int J Heat Mass Transf 51(5–6):1003–1016. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.025

    Article  MATH  Google Scholar 

  22. Rabha SS, Buwa VV (2009) Volume of fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids. Chem Eng Sci 65(1):527–537. https://doi.org/10.1016/j.ces.2009.06.061

    Article  Google Scholar 

  23. Huang M, Yang Z, Duan YY, Lee DJ (2011) Bubble growth for boiling bubbly flow for R141b in a serpentine tube. J Taiwan Inst Chem Eng 42(5):727–734. https://doi.org/10.1016/j.jtice.2011.02.007

    Article  Google Scholar 

  24. Da Riva E, Del Col D (2012) Numerical simulation of laminar liquid film condensation in a horizontal circular minichannel. J Heat Transf 134(5):051019. https://doi.org/10.1115/1.4005710

    Article  Google Scholar 

  25. Chen SH, Yang Z, Duan YY, Chen Y, Wu D (2014) Simulation of condensation flow in a rectangular microchannel. Chem Eng Process 76:60–69. https://doi.org/10.1016/j.cep.2013.12.004

    Article  Google Scholar 

  26. Liu SC, Huo Y, Liu ZW, Li L, Ning JH (2015) Theoretical research on R245fa condensation heat transfer inside a horizontal tube. Engineering 7(05):261–271. https://doi.org/10.4236/eng.2015.75023

    Article  Google Scholar 

  27. Dahikar SK, Ganguli AA, Gandhi MS, Joshi JB, Vijayan PK (2012) Heat transfer and flow pattern in co-current downward steam condensation in vertical pipes – I: CFD simulation and experimental measurements. Can J Chem Eng 91(5):1–15. https://doi.org/10.1002/cjce.21722

    Article  Google Scholar 

  28. Abadi SMANR, Mehrabi M, Meyer JP (2018) Prediction and optimization of condensation heat transfer coefficients and pressure drops of R134a inside an inclined smooth tube. Int J Heat Mass Transf 124:953–966. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.027

    Article  Google Scholar 

  29. El Hajal J, Thome J, Cavallini A (2003) Condensation in horizontal tubes, part 1: two-phase flow pattern map. Int J Heat Mass Transf 46(18):3349–3363. https://doi.org/10.1016/S0017-9310(03)00139-X

    Article  MATH  Google Scholar 

  30. Biberg D (1999) An explicit approximation for the wetted angle in two-phase stratified pipe flow. Can J Chem Eng 77(6):1221–1224. https://doi.org/10.1002/cjce.5450770619

    Article  Google Scholar 

  31. Rouhani S, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Transf 13(2):383–393. https://doi.org/10.1016/0017-9310(70)90114-6

    Article  Google Scholar 

  32. Rigot G (1973) Fluid capacity of an evaporator in direct expansion. Plomberie 328:133–144

    Google Scholar 

  33. Balcilar M, Aroonrat K, Dalkilic A, Wongwises S (2013) A generalized numerical correlation study for the determination of pressure drop during condensation and boiling of R134a inside smooth and corrugated tubes. Int Commun Heat Mass Transf 49:78–85. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.010

    Article  Google Scholar 

  34. Cavallini A, Censi G, Del Col D, Doretti L, Longo G, Rossetto L (2001) Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. Int J Refrig 24(1):73–87. https://doi.org/10.1016/S0140-7007(00)00070-0

    Article  Google Scholar 

  35. A.S. Dalkilic Condensation pressure drop characteristics of various refrigerants in a horizontal smooth tube International Communications in Heat and Mass Transfer 38 (2011) 504–512

  36. Konsetov V (1961) Heat transfer during vapour condensation inside horizontal tubes (in Russian). Energetika. Proc CIS Higher Educ Inst Power Eng Assoc 12:68–77

    Google Scholar 

  37. Yu J, Koyama S, Haraguchi H, MOMOKI S, ISHIBASHI A (1996) Boiling and condensation of alternative refrigerants in a horizontal smooth tube. Rep Inst Adv Mater Study Kyushu Univ 9(2):137–154

    Google Scholar 

  38. Park K, Jung D, Seo T (2008) Flow condensation heat transfer characteristics of hydrocarbon refrigerants and dimethyl ether inside a horizontal plain tube. Int J Multiphase Flow 34(7):628–635. https://doi.org/10.1016/j.ijmultiphaseflow.2008.01.008

    Article  Google Scholar 

  39. Zhuang X, Chen G, Zou X, Song Q, Gong M (2017) Experimental investigation on flow condensation of methane in a horizontal smooth tube. Int J Refrig 78:193–214. https://doi.org/10.1016/j.ijrefrig.2017.03.021

    Article  Google Scholar 

  40. Li P, Chen J, Norris S (2018) Flow condensation heat transfer of CO 2 in a horizontal tube at low temperatures. Appl Therm Eng 130:561–570. https://doi.org/10.1016/j.applthermaleng.2017.11.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Sereda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sereda, V., Rifert, V., Gorin, V. et al. Heat transfer during film condensation inside horizontal tubes in stratified phase flow. Heat Mass Transfer 57, 251–267 (2021). https://doi.org/10.1007/s00231-020-02946-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02946-2

Keywords

Navigation