Skip to main content
Log in

Tunnel Ventilation Analysis Using a Probabilistic Approach: Case Study, Fire in Road Tunnels with Longitudinal Ventilation

  • Published:
Fire Technology Aims and scope Submit manuscript

A Correction to this article was published on 24 February 2023

This article has been updated

Abstract

Tunnels are nowadays key elements in transport networks worldwide. To achieve a safe and efficient operation, a proper integration and design of Mechanical, Electrical and Intelligent Transportation Systems is required. Among these systems, tunnel ventilation is one of the most critical ones from the Fire Life Safety perspective, being smoke control to maintain safe conditions during self-evacuation and rescue operations one of its main objectives. Traditionally tunnel ventilation systems are sized following a deterministic approach. Designers, based on requirements and design criteria from Standards and Recommendations, focus on a limited number of fire scenarios and design parameters to reach a solution considered acceptable from a fire safety perspective. This paper proposes the use of a probabilistic approach to assess, in terms of probability of failure, the capacity of a tunnel ventilation system for fire scenarios. The model applied in the proposed process uses a 1D steady state model based on pressure losses, where critical design variables are considered random (unlike with the deterministic approach) to calculate a failure probability associated to an installed ventilation thrust. A case study example is used to analyse results using both, the traditional deterministic approach and the proposed probabilistic one. Results obtained with the deterministic approach show how, under the same design requirements, tunnels with similar characteristics allow different safety margins for the capacity of the ventilation system. These results are confirmed numerically using the probabilistic approach by evaluating failure probabilities. To avoid this, the paper proposes the use of the probabilistic approach to allow a definition of an equivalent uniform safety margin (to achieve a certain probability of failure) which would be of significant help for designers, administrations and tunnel operators. It is not the aim of the study to define the limit for the probability of failure or to characterise the design variables, but to present a useful tool with which important conclusions about the design criteria can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Change history

References

  1. PIARC (1999) Fire and smoke control in road tunnels

  2. PIARC (2008) Operational strategies for emergency ventilation

  3. Ingason H, Li YZ, Lonnermark A (2015) Tunnel fire dynamics. Springer, New York

    Book  Google Scholar 

  4. CETU (2003) Dossier Pilote du Ventilation

  5. Steunpunt Tunnelveiligheid, Aanbevelingen (2005) Ventilatie Van Verkeerstunnels

  6. NFPA 502 (2017) Standard for road tunnels, bridges and other limited access highways

  7. Directive 2004/54 (2004) Minimum safety requirements for tunnels in the Trans-European Road Network

  8. ASTRA (2008) Systemwahl, Dimensionierung und Ausstattung

  9. PIARC (2007) Systems and equipment for fire and smoke control in road tunnels

  10. PIARC (2017) Design fire characteristics for road tunnels

  11. Tarada F (2010) New perspectives on the critical velocity for smoke control. In: 4th international symposium on tunnel safety and security, Germany

  12. Kennedy WD (1996) Critical velocity: past, present and future. Seminar of smoke and critical velocity in tunnels. JFL Lowndes, London, pp. 305–322

    Google Scholar 

  13. Thomas P (1958) The movement of buoyant fluid against a stream and the venting of underground fires. Fire Research Note No. 351. Fire Research Station, Boreham Wood

  14. Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Saf J 25:305–322

    Article  Google Scholar 

  15. Wu Y, Bakar MZA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity. Fire Saf J 35:363–390

    Article  Google Scholar 

  16. PIARC (2019) Vehicle emissions and air demand for ventilation

  17. Dirección General de Tráfico (2014) Anuario Estadístico General-Madrid. http://www.dgt.es/Galerias/seguridad-vial/estadisticas-e-indicadores/publicaciones/anuario-estadistico-de-general/Anuario-estadistico-general-2014.pdf

  18. Ditlevsen O, Madsen HO (2007) Structural reliability methods. Department of Mechanical Engineering, Technical University of Denmark

  19. Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, New York, NY. ISBN: 0471089176

  20. Shooman ML (1968) Probabilistic reliability: an engineering approach, 1st edn. McGraw Hill Text. ISBN-10: 0070570159

  21. Aljaroudi A (2019) Probabilistic modeling of failure. Intechopen, London. https://doi.org/10.5772/83461

    Book  Google Scholar 

  22. PIARC (2008) Risk Analysis in road tunnels

  23. Blendermann W (1975) On a probabilistic approach to the influence of wind on the longitudinal ventilation of road tunnels. Technische Universität Hamburg-Harburg

  24. Alarcon E, Del Rey I, Vega J, Fraile A (2005) Cuantificacion de la Seguridad en Tuneles. IV Simposio de Tuneles, Andorra

  25. Royal Institute of Engineers (KIVI) Recommendations (1991) Ventilation of road tunnels. Ministry of Transport, Public Works and Water Management. Netherlands

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Fernandez Martin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been corrected to update affiliation of all authors.

Appendix

Appendix

$$\begin{aligned} {\mathrm{C}}1 & = {\mathrm{L}} + \frac{{{\dot{\mathrm{Q}}}_{\mathrm{a}} {\mathrm{D}}_{\mathrm{H}} }}{{4{\mathrm{h}}_{\mathrm{app}} {\mathrm{ST}}_{0} }} \left( {1 - {\mathrm{e}}^{{\frac{{4{\mathrm{h}}_{\mathrm{app}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{D}}_{\mathrm{H}} {\mathrm{W}}}}\left( {{\mathrm{x}}_{\mathrm{fire}} - {\mathrm{L}}} \right)}} } \right) \\ {\mathrm{C}}2 & = \frac{{ - {{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{D}}_{\mathrm{H}} {\mathrm{W}}}}{{4{\mathrm{h}}_{\mathrm{app}} }} {\mathrm{Ln}}\left( {\frac{{\frac{{{\dot{\mathrm{Q}}}_{\mathrm{a}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{SWT}}_{0} }}{\mathrm{e}}^{{\frac{{4{\mathrm{h}}_{\mathrm{app}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{D}}_{\mathrm{H}} {\mathrm{W}}}}\left( {{\mathrm{x}}_{\mathrm{fire}} - {\mathrm{L}}} \right)}} + 1}}{{\frac{{{\dot{\mathrm{Q}}}_{\mathrm{a}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{SWT}}_{0} }} + 1}}} \right) \\ {\mathrm{C}}3 & = \left( {\frac{1}{\mathrm{L}}\left( {{\mathrm{L}} + \frac{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{D}}_{\mathrm{H}} {\mathrm{W}}}}{{4{\mathrm{h}}_{\mathrm{app}} }} {\mathrm{Ln}}\left( {\frac{{\frac{{{\dot{\mathrm{Q}}}_{\mathrm{a}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{SWT}}_{0} }}{\mathrm{e}}^{{\frac{{4{\mathrm{h}}_{\mathrm{app}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{D}}_{\mathrm{H}} {\mathrm{W}}}}\left( {{\mathrm{x}}_{\mathrm{fire}} - {\mathrm{L}}} \right)}} + 1}}{{\frac{{{\dot{\mathrm{Q}}}_{\mathrm{a}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{SWT}}_{0} }} + 1}}} \right)} \right) - \frac{\mathrm{W}}{{{\mathrm{W}}_{\mathrm{jet}} }}} \right) \\ {\mathrm{C}}4 & = \left( {1 + \frac{{{\dot{\mathrm{Q}}}_{\mathrm{a}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{SWT}}_{0} }}{\mathrm{e}}^{{\frac{{ - 4{\mathrm{h}}_{\mathrm{app}} }}{{{{\uprho}}_{0} {\mathrm{C}}_{\mathrm{p}} {\mathrm{D}}_{\mathrm{H}} {\mathrm{W}}}}\left( {{\mathrm{L}} - {\mathrm{x}}_{\mathrm{fire}} } \right)}} } \right) \\ \end{aligned}$$

where \({\dot{\mathrm{Q}}}_{\mathrm{a}}\) the convective HRR (around 2/3 (60-80%) of the total HRR [3, 4]; Cp is the heat capacity; T0 is the ambient temperature in the tunnel (with no fire); \({\mathrm{h}}_{\mathrm{app}}\) is the coefficient of equivalent thermal exchange that depends on the convective and radiation heat transfers (refer to [4] for detailed description)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez Martin, S., del Rey Llorente, I. & Fraile de Lerma, A. Tunnel Ventilation Analysis Using a Probabilistic Approach: Case Study, Fire in Road Tunnels with Longitudinal Ventilation. Fire Technol 57, 1115–1134 (2021). https://doi.org/10.1007/s10694-020-01029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-020-01029-2

Keywords

Navigation