Skip to main content
Log in

Microwave-Assisted Modification of Nonwoven Fabric: Inducing Absorbency and Antibacterial Properties

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Antibacterial absorbent structures have been fabricated in two steps through partially and fully-irradiation modification using the glycidyl crosslinked acrylate-based microgels, synthesized by inverse emulsion polymerization. ATR-FTIR, SEM, optical microscope, as well as antibacterial activity, absorbency in DW and saline solution, have validated the modification process. The microstructures of fibrils have shown great integrity in coating, and absorbency has been induced to the both fully- and partially- irradiation modified structures. They have presented ample antibacterial behavior against S. aureus (Staphylococcus aureus); the ratio of inhibition zone area to the sheet area varies between 1.3 and 4.8 in terms of microgel chemical structure (comonomers) and reaction condition (thermal or microwave).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Zohuriaan-Mehr and K. Kabiri, Iran. Polym. J., 17, 451 (2008).

    CAS  Google Scholar 

  2. F. L. Buchholz and A. T. Graham, “Modern Superabsorbent Polymer Technology”, Wiley-VCH, 1998.

  3. N. Moini, K. Kabiri, M. J. Zohuriaan-Mehr, H. Omidian, and N. Esmaeili, Polym. Adv. Technol., 28, 1132 (2017).

    Article  CAS  Google Scholar 

  4. N. Moini and K. Kabiri, Iran. Polym. J., 24, 977 (2015).

    Article  CAS  Google Scholar 

  5. N. Moini, K. Kabiri, and M. J. Zohuriaan-Mehr, Polym. Plast. Technol. Eng., 55, 278 (2015).

    Article  Google Scholar 

  6. N. Moini, K. Kabiri, and M. J. Zohuriaan-Mehr, US Patent, 2018/0008960 (2018).

  7. S. Shahi, M. J. Zohuriaan-mehr, and H. Omidian, J. Bioact. Compat. Polym., 32, 128 (2017).

    Article  CAS  Google Scholar 

  8. N. Moini, K. Kabiri, M. J. Zohuriaan-mehr, and N. Esmaeili, Polym. Bull., 73, 1119 (2015).

    Article  Google Scholar 

  9. S. Shahi, H. R. Motasadizadeh, and M. J. Zohuriaan-Mehr, Int. J. Polym. Mater. Polym. Biomater., 66, 544 (2017).

    Article  CAS  Google Scholar 

  10. A. Sabzevari, K. Kabiri, and M. Siahkamari, Iran. Polym. J., 25, 635 (2016).

    Article  CAS  Google Scholar 

  11. W. F. Lindsay, R. A. Meintrup, and H. J. Slawny, US Patent, 4260443 (1981).

  12. J. Qin, J. Scott, S. McIntosh, A. J. Lang, and D. L. B. JR, US Patent, 2007/0135785 (2007).

  13. R. L. McKiernan, S. D. Smith, and A. Meyer, US Patent, 8409664 (2013).

  14. A. Hajighasem and K. Kabiri, Iran. Polym. J., 24, 1049 (2015).

    Article  CAS  Google Scholar 

  15. A. Sabzevari and K. Kabiri, Iran. Polym. J., 25, 597 (2016).

    Article  CAS  Google Scholar 

  16. V. J. Pappas and V. Z. Detwiler, US Patent, 5817713 (1998).

  17. A. Jones and D. Vaughan, J. Orthop. Nurs., 9, S1 (2005).

    Article  Google Scholar 

  18. J. P. Koczab, US Patent, 4826498 (1989).

  19. R. W. Tanzer, F. P. Abuto, S. R. Kellenberger, D. R. Laux, B. K. Nortman, W. S. Pomplun, C. G. Rippl, M. L. Robinson, L. F. Sallee, W. Z. Schroeder, S. M. Yarbrough, and D. L. Zenker, US Patent, 5425725 (1995).

  20. B. E. Kolpin and D. C. Brownlee, US Patent, 4429001 (1984).

  21. L. A. B. I. Insley, US Patent, 4985298 (1991).

  22. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Mater. Sci. Eng. C, 57, 414 (2015).

    Article  CAS  Google Scholar 

  23. N. Moini, M. J. Zohuriaan-mehr, K. Kabiri, and H. A. Khonakdar, Appl. Surf. Sci., 487, 1131 (2019).

    Article  CAS  Google Scholar 

  24. M. Santos, A. Fonseca, P. Mendonça, R. Branco, A. Serra, P. Morais, and J. Coelho, Materials (Basel), 9, 599 (2016).

    Article  Google Scholar 

  25. J. Buchenska, J. Appl. Polym. Sci., 65, 967 (1996).

    Article  Google Scholar 

  26. G. M. Raghavendra, T. Jayaramudu, K. Varaprasad, G. S. Mohan Reddy, and K. M. Raju, RSC Adv., 5, 14351 (2015).

    Article  CAS  Google Scholar 

  27. M. He, Q. Wang, W. Zhao, and C. Zhao, J. Mater. Chem. B, 6, 3904 (2018).

    Article  CAS  Google Scholar 

  28. M. He, Q. Wang, J. Zhang, W. Zhao, and C. Zhao, ACS Appl. Mater. Interfaces, 9, 44782 (2017).

    Article  CAS  Google Scholar 

  29. D. R. Monteiro, L. F. Gorup, A. S. Takamiya, A. C. Ruvollo-Filho, E. R. Camargo, and D. B. Barbosa, Int. J. Antimicrob. Agents, 34, 103 (2009).

    Article  CAS  Google Scholar 

  30. Y. Murali Mohan, K. Lee, T. Premkumar, and K. E. Geckeler, Polymer (Guildf), 48, 158 (2007).

    Article  Google Scholar 

  31. P. S. K. Murthy, Y. Murali Mohan, K. Varaprasad, B. Sreedhar, and K. Mohana Raju, J. Colloid Interface Sci., 318, 217 (2008).

    Article  CAS  Google Scholar 

  32. Y. Guan, J. Chen, X. Qi, G. Chen, F. Peng, and R. Sun, Ind. Eng. Chem. Res., 54, 7393 (2015).

    Article  CAS  Google Scholar 

  33. A. Jain, L. S. Duvvuri, S. Farah, N. Beyth, A. J. Domb, and W. Khan, Adv. Healthc. Mater., 3, 1969 (2014).

    Article  CAS  Google Scholar 

  34. M. Li, X. Jiang, D. Wang, Z. Xu, and M. Yang, Colloids Surfaces B Biointerfaces, 177, 370 (2019).

    Article  CAS  Google Scholar 

  35. L. Mi, H. Xue, Y. Li, and S. Jiang, Adv. Funct. Mater., 21, 4028 (2011).

    Article  CAS  Google Scholar 

  36. J. Qu, X. Zhao, Y. Liang, T. Zhang, P. X. Ma, and B. Guo, Biomaterials, 183, 185 (2018).

    Article  CAS  Google Scholar 

  37. M. Constantin, I. Asmarandei, V. Harabagiu, L. Ghimici, P. Ascenzi, and G. Fundueanu, Carbohydr. Polym., 91, 74 (2013).

    Article  CAS  Google Scholar 

  38. A. Sosnik, G. Gotelli, and G. A. Abraham, Prog. Polym. Sci., 36, 1050 (2011).

    Article  CAS  Google Scholar 

  39. D. E. Clark, D. C. Folz, and J. K. West, Mater. Sci. Eng. A, 287, 153 (2000).

    Article  Google Scholar 

  40. M. Ashkani, K. Kabiri, A. Salimi, H. Bouhendi, and H. Omidian, Iran. Polym. J., 27, 183 (2018).

    Article  CAS  Google Scholar 

  41. G. Socrates, “Infrared and Raman Characteristic Group Frequencies Contents”, John Wiley & Sons, Ltd., Chichester, The Third, 2001.

    Google Scholar 

  42. E. A. Aggour, Acta Polym., 44, 97 (1993).

    Article  CAS  Google Scholar 

  43. X. Ding, S. Duan, X. Ding, R. Liu, and F. Xu, Adv. Funct. Mater., 28, 1802140 (2018).

    Article  Google Scholar 

  44. T. Tashiro, Macromol. Mater. Eng., 286, 63 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kabiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moini, N., Ashkani, M. & Kabiri, K. Microwave-Assisted Modification of Nonwoven Fabric: Inducing Absorbency and Antibacterial Properties. Fibers Polym 21, 1857–1867 (2020). https://doi.org/10.1007/s12221-020-9101-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9101-y

Keywords

Navigation