Skip to main content
Log in

Progress in rheology and hydrodynamics allowed by NMR or MRI techniques

  • Review Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

A Correction to this article was published on 18 November 2020

This article has been updated

Abstract

We review the uses of nuclear magnetic resonance techniques for experiments with fluids. More precisely we focus on the progress of knowledge in complex flows, rheology of complex fluids, flow in porous media, colloid transport, fluid transfers in complex porous systems, which have been allowed by NMR techniques. These achievements took advantage of the versatility of NMR, which makes it possible to carry out more original measurements than the basic well-known density imaging (MRI). One may thus rely on non-destructive, non-invasive measurements providing local velocimetry, local rheometry, statistical approaches of molecular displacements or velocity, distribution of adsorbed or suspended colloids, the evolution of the liquid distribution in different states, data on fluid transfers during drying or imbibition, etc.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright Fig. 14a, b of Rabideau et al. (2010)

Fig. 2

Copyright Fig. 2 of Vallatos et al. (2012)

Fig. 3
Fig. 4
Fig. 5

Data from Ovarlez et al. (2006)

Fig. 6

Copyright Fig. 10 of Lovreglio et al. (2018)

Fig. 7
Fig. 8

A Copyright Fig. 2 of Lehoux et al. (2016). B Data from Lehoux et al. (2016)

Fig. 9

Copyright: Figs. 4–6 of Ben Abdelouahab et al. (2019a)

Fig. 10

Data from Pel et al. (2002)

Fig. 11

Copyright Fig. 8 of Lerouge et al. (2020)

Fig. 12

Data from Geizici-Koç et al. (2017)

Similar content being viewed by others

Change history

  • 18 November 2020

    In the original article the expression for equation is partly missing. The correct equation should read.

References

  • Abbott JR, Tetlow N, Graham AL, Altobelli SA, Fukushima E, Mondy LA, Stephens TS (1991) Experimental observations of particle migration in concentrated suspensions: Couette flow. J Rheol 35:773–795

    Google Scholar 

  • Al-kaby RN, Jayaratne JS, Brox TI, Codd SL, Seymour JD, Brown JR (2018) Rheo-NMR of transient and steady state shear banding under shear startup. J Rheol 62:1125–1134

    Google Scholar 

  • Andrade DEV, Ferrari M, Coussot P (2020) The liquid regime of waxy oils suspensions: a magnetic resonance velocimetry analysis. J NonNewton Fluid Mech 279:104261

    MathSciNet  Google Scholar 

  • Banko AJ, Benson MJ, Gunady IE, Elkins CJ, Eaton JK (2020) An improved three-dimensional concentration measurement technique using magnetic resonance imaging. Exp Fluids 61:53

    Google Scholar 

  • Barnes E, Wilson D, Johns M (2006) Velocity profiling inside a ram extruder using magnetic resonance (MR) techniques. Chem Eng Sci 61:1357–1367

    Google Scholar 

  • Barrie PJ (2000) Characterization of porous media using NMR methods. Annu Rep NMR Spectrom 41:265–316

    Google Scholar 

  • Baumann T, Werth CJ (2005) Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging. Colloids Surf A 265:2–10

    Google Scholar 

  • Bear J (1988) Dynamics of fluids in porous media. Dover, New York

    MATH  Google Scholar 

  • Ben Abdelouahab N, Gossard A, Rodts S, Coasne B, Coussot P (2019a) Convective drying of a porous medium with a paste cover. Eur Phys J E 5:66

    Google Scholar 

  • Ben Abdelouahab N, Gossard A, Rodts S, Coussot P (2019b) Controlled imbibition from a soft wet material (poultice). Soft Matter 15:6732–6741

    Google Scholar 

  • Bleyer J, Coussot P (2014) Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation. Phys Rev E 89:063018

    Google Scholar 

  • Bleyer J, Maillard M, de Buhan P, Coussot P (2015) Efficient numerical computations of yield stress fluid flows using second-order cone programming. Comput Methods Appl Mech Eng 283:599–614

    MathSciNet  MATH  Google Scholar 

  • Blythe TW, Sederman AJ, Mitchell J, Stitt EH, York APE, Gladden LF (2015) Characterizing the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis. J Magn Reson 255:122–131

    Google Scholar 

  • Bray JB, Davenport AJ, Ryder KS, Britton MM (2016) Quantitative, in situ visualization of metal-ion dissolution transport using 1H Magnetic Resonance Imaging. Angew Chem Int Ed 55:9394–9397

    Google Scholar 

  • Britton MM, Callaghan PT (1997a) Two-phase shear-band structures at uniform stress. Phys Rev Lett 78:4930–4933

    Google Scholar 

  • Britton MM, Callaghan PT (1997b) NMR visualization of anomalous flow in cone-and-plate rheometry. J Rheol 41:1365–1386

    Google Scholar 

  • Britton MM, Callaghan PT (1999) Shear-Banding instability in wormlike micellar solutions. Eur Phys J B 7:237–249

    Google Scholar 

  • Brown JR, Fridjonsson EO, Seymour JD, Codd SL (2009) Nuclear magnetic resonance measurement of shear-induced particle migration in Brownian suspensions. Phys Fluids 21:093301

    MATH  Google Scholar 

  • Brown JR, Trudnowski J, Nybo E, Kent KE, Lund T, Parsons A (2017) Quantification of non-Newtonian fluid dynamics of a wormlike micelle solution in porous media with magnetic resonance. Chem Eng Sci 173:145–152

    Google Scholar 

  • Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford

    Google Scholar 

  • Chaparian E, Frigaard IA (2017) Yield limit analysis of particle motion in a yield-stress fluid. J Fluid Mech 819:311–351

    MathSciNet  MATH  Google Scholar 

  • Cheremisinoff NP (1998) Liquid filtration. Butterworth-Heinemann, Boston

    Google Scholar 

  • Chernoburova O, Jenny M, Kiesgen De Richter S, Ferrari M, Otsuki A (2018) Dynamic behavior of dilute bentonite suspensions under different chemical conditions studied in Magnetic Resonance Imaging velocimetry. Colloids Interfaces 2:41

    Google Scholar 

  • Chevalier T, Rodts S, Chateau X, Boujlel J, Maillard M, Coussot P (2013) Boundary layer (shear-band) in frustrated viscoplastic flows. EPL 102:48002

    Google Scholar 

  • Chevalier T, Rodts S, Chateau X, Chevalier C, Coussot P (2014) Breaking of non-Newtonian character in flows through porous medium. Phys Rev E 89:023002

    Google Scholar 

  • Chow AW, Sinton SW, Iwamiya JH, Stephens TS (1994) Shear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys Fluids 6:2561–2576

    Google Scholar 

  • Codd SL, Seymour JD (2012) Nuclear magnetic resonance measurement of hydrodynamic dispersion in porous media: preasymptotic dynamics, structure and nonequilibrium statistical mechanics. Eur Phys J Appl Phys 60:24204

    Google Scholar 

  • Colbourne AA, Blythe TW, Barua R, Lovett S, Mitchell J, Sederman AJ, Gladden LF (2018) Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow. J Magn Reson 286:30–35

    Google Scholar 

  • Coleman BD, Markovitz H, Noll W (1966) Viscometric flows of non-Newtonian fluids. Springer, New York

    MATH  Google Scholar 

  • Corbett AM, Phillips RJ, Kauten RJ, McCarthy KL (1995) Magnetic resonance imaging of concentration and velocity profiles of pure fluids and solid suspensions in rotating geometries. J Rheol 39:907–924

    Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions and granular materials. Wiley, New York

    Google Scholar 

  • Coussot P (2014) Yield stress fluid flows: a review of experimental data. J NonNewton Fluid Mech 211:31–49

    Google Scholar 

  • Coussot P, Ovarlez G (2010) Physical origin of shear-banding of jammed systems. Eur Phys J E 33:183–188

    Google Scholar 

  • Coussot P, Nguyen QD, Huynh HT, Bonn D (2002a) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol 46:573–589

    Google Scholar 

  • Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, Jarny S, Lesueur D (2002b) Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett 88:218301

    Google Scholar 

  • Coussot P, Tocquer L, Lanos C, Ovarlez G (2009) Macroscopic vs local rheology of yield stress fluids. J NonNewton Fluid Mech 158:85–90

    Google Scholar 

  • Deurer M, Vogeler I, Clothier BE, Scotter DR (2004) Magnetic resonance imaging of hydrodynamic dispersion in a saturated porous medium. Transp Porous Media 54:145–166

    Google Scholar 

  • Diaz J, Rendueles M, Diaz M (2010) Straining phenomena in bacteria transport through natural porous media. Environ Sci Pollut Res 17:400–409

    Google Scholar 

  • Dimitriou CJ, McKinley GH (2019) A canonical framework for modeling elasto-viscoplasticity in complex fluids. J NonNewton Fluid Mech 265:116–132

    MathSciNet  Google Scholar 

  • Douglass BS, Colby RH, Madsen LA, Callaghan PT (2008) Rheo-NMR of wormlike micelles formed from nonionic Pluronic surfactants. Macromolecules 41:804–814

    Google Scholar 

  • Dullien FAL (1992) Porous media—fluid transport and porous structure. Academic Press, San Diego

    Google Scholar 

  • Durst F, Melling A, Whitelaw JH (1976) Principles and practice of laser-Doppler anemometry. Academic Press, New York

    Google Scholar 

  • Dvinskikh SV, Henriksson M, Mendicino AL, Fortino S, Toratti T (2011) NMR imaging study and multi-Fickian numerical simulation of moisture transfer in Norway spruce samples. Eng Struct 33:3079–3086

    Google Scholar 

  • Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurements of fluid motion. Exp Fluids 43:823–858

    Google Scholar 

  • Erich SJF, Laven J, Pel L, Huinink HP, Kopinga K (2006) NMR depth profiling of drying alkyd coatings with different catalysts. Prog Org Coat 55:105–111

    Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford Science Publications, Oxford

    Google Scholar 

  • Fardin MA, Lerouge S (2012) Instabilities in wormlike micelle systems: from shear-banding to elastic turbulence. Eur Phys J E 35:91

    Google Scholar 

  • Faure P, Coussot P (2010) Drying of a model soil. Phys Rev E 82:036303

    Google Scholar 

  • Faure P, Peter U, Lesueur D, Coussot P (2012) Water transfers within Hemp Lime Concrete followed by NMR. Cem Concr Res 42:1468–1474

    Google Scholar 

  • Fourmentin M, Faure P, Pelupessy P, Sarou-Kanian V, Peter U, Lesueur D, Rodts S, Daviller D, Coussot P (2016) NMR and MRI observation of water absorption/uptake in hemp shives used for hemp concrete. Constr Build Mater 124:405–413

    Google Scholar 

  • Fourmentin M, Faure P, Rodts S, Peter U, Lesueur D, Daviller D, Coussot P (2017) NMR observation of water transfer between a cement paste and a porous medium. Cem Concr Res 95:56–64

    Google Scholar 

  • Fraggedakis D, Dimakopoulos Y, Tsamopoulos J (2016) Yielding the yield stress analysis: a thorough comparison of recently proposed elasto-visco-plastic (EVP) fluid models. J NonNewton Fluid Mech 238:170–188

    Google Scholar 

  • Fridjonsson EO, Codd SL, Seymour JD (2012) Application of PFG-NMR to study the impact of colloidal deposition on hydrodynamic dispersion in a porous medium. Transp Porous Media 103:117–130

    Google Scholar 

  • Fuller GG (1995) Optical rheometry of complex fluids. Oxford University Press, Oxford

    Google Scholar 

  • Gallot T, Perge C, Grenard V, Fardin MA, Taberlet N, Manneville S (2013) Ultrafast ultrasonic imaging coupled to rheometry: principle and illustration. Rev Sci Instrum 84:045107

    Google Scholar 

  • Geizici-Koç Ö, Erich JF, Huinink H, ven der Ven LGJ, Adan OCG (2017) Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose 24:535–553

    Google Scholar 

  • Gerber G, Rodts S, Aimedieu P, Faure P, Coussot P (2018) Particle-size exclusion regimes in porous media. Phys Rev Lett 120:148001

    Google Scholar 

  • Gladden LF, Mitchell J (2011) Measuring adsorption, diffusion and flow in chemical engineering: applications of magnetic resonance to porous media. New J Phys 13:035001

    Google Scholar 

  • Gladden LF, Sederman AJ (2013) Recent advances in flow MRI. J Magn Reson 229:2–11

    Google Scholar 

  • Götz J, Kreibich W, Peciar M, Buggisch H (2001) MRI of Couette experiments in a newly developed shear device—suitable for pastes and concentrated suspensions. J NonNewton Fluid Mech 98:117–139

    MATH  Google Scholar 

  • Götz J, Zick K, Heinen C, König T (2002) Visualisation of flow processes in packed beds with NMR imaging: determination of the local porosity, velocity vector and local dispersion coefficients. Chem Eng Process 41:611–629

    Google Scholar 

  • Graham AL, Altobelli SA, Fukurshima E, Mondy LA, Stephens TS (1991) NMR imaging of shear-induced diffusion structure in concentrated suspensions undergoing Couette flow. J Rheol 35:191–201

    Google Scholar 

  • Guillon V, Fleury M, Bauer D, Neel MC (2013) Superdispersion in homogeneous unsaturated porous media using NMR propagators. Phys Rev E 87:043007

    Google Scholar 

  • Haavisto Cardona MJ, Salmela J, Powell RL, McCarthy MJ, Kataja M, Koponen AI (2017) Experimental investigation of the flow dynamics and rheology of complex fluids in pipe flow by hybrid multi-scale velocimetry. Exp Fluids 58:158

    Google Scholar 

  • Hahn MW, Abadzic D, O’Melia CR (2004) Aquasols: on the role of secondary minima. Environ Sci Technol 38:5915–5924

    Google Scholar 

  • Harding SG, Baumann H (2001) Nuclear magnetic resonance studies of solvent flow through chromatographic columns: effect of packing density on flow patterns. J Chromatogr A 905:19–34

    Google Scholar 

  • Hazrati K, Pel L, Marchand J, Kopinga K, Pigeon M (2002) Determination of isothermal unsaturated capillary flow in high performance cement mortars by NMR imaging. Mater Struct 35:614–622

    Google Scholar 

  • Hollingsworth KG, Johns ML (2004) Rheo-nuclear magnetic resonance of emulsion systems. J Rheol 48:787–803

    Google Scholar 

  • Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J (2004) Shear-banding phenomena in ultrasoft colloidal glasses. J Rheol 48:1085–1101

    Google Scholar 

  • Iwamiya JH, Chow AW, Sinton SW (1994) NMR flow imaging of Newtonian liquids and a concentrated suspension through an axisymmetric sudden contraction. Rheol Acta 33:267–282

    Google Scholar 

  • Jarny S, Roussel N, Rodts S, Le Roy R, Coussot P (2005) Rheological behavior of cement pastes from MRI velocimetry. Concr Cem Res 35:1873–1881

    Google Scholar 

  • Jossic L, Magnin A (2005) Structuring of gelled suspensions flowing through a sudden three-dimensional expansion. J NonNewton Fluid Mech 127:201–212

    Google Scholar 

  • Jossic L, Briguet A, Magnin A (2002) Segregation under flow of objects suspended in a yield stress fluid and NMR visualization. Chem Eng Sci 57:409–418

    Google Scholar 

  • Keita E, Faure P, Rodts S, Coussot P (2013) MRI evidence for a receding-front effect in drying porous media. Phys Rev E 87:062303

    Google Scholar 

  • Keita E, Kodger TE, Faure P, Rodts S, Weitz DA, Coussot P (2016) Water retention against drying with soft particle suspensions in porous media. Phys Rev E 94:033104

    Google Scholar 

  • Kekkonen PM, Ylisassi A, Telkki VV (2013) Absorption of water in thermally modified pine wood as studied by Nuclear Magnetic Resonance. J Phys Chem 118:2146–2153

    Google Scholar 

  • Khrapitchev AA, Callaghan PT (2003) Reversible and irreversible dispersion in a porous medium. Phys Fluids 15:2649–2660

    MATH  Google Scholar 

  • Khrapitchev AA, Stapf S, Callaghan PT (2002) NMR visualization of displacement correlations for flow in porous media. Phys Rev E 66:051203

    Google Scholar 

  • Kind J, Thiele CM (2019) MRI and localized NMR spectroscopy of sessile droplets on hydrophilic, hydrophobic and superhydrophobic surfaces—examination of the chemical composition during evaporation. J Magn Reson 307:106579

    Google Scholar 

  • Koptyug IV, Sagdeev RZ (2002) Applications of NMR tomography to mass transfer studies. Russ Chem Rev 71:789–835

    Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3:137–145

    MATH  Google Scholar 

  • Kulasiri D (2013) Non-Fickian solute transport in porous media. Springer, Berlin

    MATH  Google Scholar 

  • Lakshmanan S, Holmes WM, Sloan WT, Phoenix VR (2015a) Nanoparticle transport in saturated porous medium using magnetic resonance imaging. Chem Eng J 266:156–162

    Google Scholar 

  • Lakshmanan S, Holmes WM, Sloan WT, Phoenix VR (2015b) Characterization of nanoparticle transport through quartz and dolomite gravels by magnetic resonance imaging. Int J Environ Sci Technol 12:3373–3384

    Google Scholar 

  • Lebon L, Oger L, Leblond J, Hulin JP, Martys NS, Schwartz LM (1996) Pulsed gradient NMR measurements and numerical simulation of flow velocity distribution in sphere packings. Phys Fluids 8:293–301

    Google Scholar 

  • Lebon L, Leblond J, Hulin JP (1997) Experimental measurement of dispersion processes at short times using a pulsed field gradient NMR technique. Phys Fluids 9:481–490

    Google Scholar 

  • Lehoux AP, Rodts S, Faure P, Michel E, Courtier-Murias D, Coussot P (2016) MRI measurements evidence weak dispersion in homogeneous porous media. Phys Rev E 94:053107

    Google Scholar 

  • Lehoux AP, Faure P, Lafolie F, Rodts S, Courtier-Murias D, Coussot P, Michel E (2017a) Combined time-lapse magnetic resonance imaging and modeling to investigate colloid deposition transport in porous media. Water Res 123:12–20

    Google Scholar 

  • Lehoux AP, Faure P, Michel E, Courtier-Murias D, Rodts S, Coussot P (2017b) Transport and adsorption of nano-colloids in porous media observed by Magnetic Resonance Imaging. Transp Porous Media 19:403–423

    MathSciNet  Google Scholar 

  • Lerouge T, Maillet B, Courtier-Murias D, Grande D, Le Droumaguet B, Pitois O, Coussot P (2020) Drying of a compressible biporous material. Phys Rev Appl 13:044061

    Google Scholar 

  • Lopez-Gonzalez MR, Holmes WM, Callaghan PT (2006) Rheo-NMR phenomena of wormlike micelles. Soft Matter 2:855–869

    Google Scholar 

  • Lovreglio P, Das S, Buist KA, Peters EAJF, Pel L, Kuipers JAM (2018) Experimental and numerical investigation of structure of hydrodynamics in packed beds of spherical particles. AIChE J 64:1896–1907

    Google Scholar 

  • Masliyah JH, Bhattacharjee S (2005) Electrokinetic and colloid transport phenomena. Wiley, New York

    Google Scholar 

  • Medronho B, Brown J, Miguel MG, Schmidt C, Olsson U, Galvosas P (2011) Planar lamellae and onions: a spatially resolved rheo-NMR approach to the shear-induced structural transformations in a surfactant model system. Soft Matter 7:4938–4947

    Google Scholar 

  • Mendes (de Souza) PR (2011) Thixotropic elasto-viscoplastic model for structured fluids. Soft Matter 7:2471–2483

    Google Scholar 

  • Mendes (de Souza) PR, Thompson RL (2012) A critical overview of elasto-viscoplastic thixotropic modeling. J NonNewton Fluid Mech 187:8–15

    Google Scholar 

  • Mendes R, Vinay G, Ovarlez G, Coussot P (2015) Reversible and irreversible destructuring flow in waxy oils: an MRI study. J NonNewton Fluid Mech 220:77–86

    MathSciNet  Google Scholar 

  • Mertens D, Heinen C, Hardy EH, Buggisch HW (2006) Newtonian and non-Newtonian low Re number flow through bead packings. Chem Eng Technol 29:854–861

    Google Scholar 

  • Milani PM, Gunady IR, Ching DS, Banko AJ, Elkins CJ, Eaton JK (2019) Enriching MRI mean flow data of inclined jets in crossflow with Large Eddy Simulations. Int J Heat Fluid Flow 80:108472

    Google Scholar 

  • Moller PCF, Rodts S, Michels MAJ, Bonn D (2008) Shear-banding and yield stress in soft glassy materials. Phys Rev E 77:041507

    Google Scholar 

  • Moraczewski T, Tang H, Shapley NC (2005) Flow of a concentrated suspension through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging. J Rheol 49:1409–1428

    Google Scholar 

  • Nikolaeva T, Vergeldt FJ, Serial R, Dijksman JA, Venema P, Voda A, van Duynhoven J, Van As H (2020) High field micro MRI velocimetry measurement of quantitative local flow curves. Anal Chem 92:4193–4200

    Google Scholar 

  • Nunes C, Pel L, Kunecky J, Slizkova Z (2017) The influence of the pore structure on the moisture transport in lime plaster-brick systems as studied by NMR. Constr Build Mater 142:395–409

    Google Scholar 

  • Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of non-colloidal particles through magnetic resonance imaging. J Rheol 50:259–292

    Google Scholar 

  • Ovarlez G, Rodts S, Ragouilliaux A, Coussot P, Goyon J, Colin A (2008) Wide-gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E 78:036307

    Google Scholar 

  • Ovarlez G, Rodts S, Chateau X, Coussot P (2009) Phenomenology and physical origin of shear-localization and shear-banding in complex fluids. Rheol Acta 48:831–844

    Google Scholar 

  • Ovarlez G, Mahaut F, Bertrand F, Chateau X (2011) Flows and heterogeneities with a vane tool: magnetic resonance imaging measurements. J Rheol 55:197–223

    Google Scholar 

  • Pavlovskaya GE, Meersmann T, Jin C, Rigby SP (2018) Fluid flow in a porous medium with transverse permeability discontinuity. Phys Rev Fluids 3:044102

    Google Scholar 

  • Pel L, Brocken H, Kopinga K (1996) Determination of moisture diffusivity in porous media using moisture concentration profiles. Int J Heat Mass Transf 39:1273–1280

    Google Scholar 

  • Pel L, Huinink H, Kopinga K (2002) Ion transport and crystallization in inorganic building materials as studied by nuclear magnetic resonance. Appl Phys Lett 81:15

    Google Scholar 

  • Pel L, Huinink H, Kopinga K (2003) Salt transport and crystallization in porous building materials. Magn Reson Imaging 21:317–320

    Google Scholar 

  • Petkovic J, Huinink HP, Pel L, Kopinga K, van Hees RPJ (2007) Salt transport in plaster/substrate layers. Mater Struct 40:475–490

    Google Scholar 

  • Petkovic J, Huinink HP, Pel L, Kopinga K, van Hees RPJ (2010) Moisture and salt transport in three-layer plaster/substrate systems. Constr Build Mater 24:118–127

    Google Scholar 

  • Philippot S, Korb JP, Petit D, Zanni H (1998) Analysis of microporosity and setting of reactive powder concrete by proton nuclear relaxation. Magn Reson Imaging 16:515–519

    Google Scholar 

  • Rabideau BD, Moucheront P, Bertrand F, Rodts S, Roussel N, Lanos C, Coussot P (2010) The extrusion of a model yield stress fluid imaged by MRI velocimetry. J NonNewton Fluid Mech 165:394–408

    Google Scholar 

  • Rabideau BD, Moucheront P, Bertrand F, Rodts S, Melinge Y, Lanos C, Coussot P (2012) Internal flow characteristics of a plastic kaolin suspension during extrusion. J Am Ceram Soc 95:494–501

    Google Scholar 

  • Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry—a practical guide. Springer, Berlin

    Google Scholar 

  • Ragouilliaux A, Herzhaft B, Bertrand F, Coussot P (2006) Flow instability and shear localization in a drilling mud. Rheol Acta 46:261–271

    Google Scholar 

  • Ragouilliaux A, Ovarlez G, Shahidzadeh-Bonn N, Herzhaft B, Palermo T, Coussot P (2007) Transition from a simple yield stress fluid to a thixotropic material. Phys Rev E 76:051408

    Google Scholar 

  • Ramanan B, Holmes WM, Sloan WT, Phoenix VR (2012) Investigation of nanoparticle transport inside coarse-grained geological media using magnetic resonance imaging. Environ Sci Technol 46:360–366

    Google Scholar 

  • Rassi EM, Codd SL, Seymour JD (2014) Corrigendum: Nuclear magnetic resonance characterization of the stationary dynamics partially saturated media during steady-state infiltration flow (2011 New J. Phys. 13:015007). New J Phys 16:039501

    Google Scholar 

  • Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P (2002) Direct determination by NMR of the thixotropic and yielding behavior of suspensions. J Rheol 46:709–732

    Google Scholar 

  • Ren X, Stapf S, Blümich B (2005) NMR velocimetry of flow in model fixed-bed reactors of low aspect ratio. AIChE J 51:392–405

    Google Scholar 

  • Rodts S, Boujlel J, Rabideau BD, Ovarlez G, Roussel N, Moucheront P, Lanos C, Bertrand F, Coussot P (2010) Solid–liquid transition and rejuvenation similarities in complex flows of thixotropic materials studied by NMR and MRI. Phys Rev E 81:021402

    Google Scholar 

  • Rogers SA, Callaghan PT (2009) Time-dependent NMR-velocimetry of a colloidal glass. Rheol Acta 48:735–745

    Google Scholar 

  • Sahimi M (2011) Flow and transport in porous media and fractured rock. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    MATH  Google Scholar 

  • Saidov TA, Pel L, van der Heijden GHA (2015) Crystallization of sodium sulfate in porous media by drying at a constant temperature. Int J Heat Mass Transf 83:621–628

    Google Scholar 

  • Saidov TA, Pel L, Kopinga K (2017) Sodium sulfate salt weathering of porous building materials studied by NMR. Mater Struct 50:145

    Google Scholar 

  • Salmon JB, Manneville S, Colin A, Pouligny B (2003) An optical fiber based interferometer to measure velocity profiles in sheared complex fluids. Eur Phys J AP 22:143–154

    Google Scholar 

  • Sankey MH, Holland DJ, Sederman AJ, Gladden LF (2009) Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds. J Magn Reson 196:142–148

    Google Scholar 

  • Saramito P (2007) A new constitutive equation for elastoviscoplastic fluid flows. J NonNewton Fluid Mech 145:1–14

    MATH  Google Scholar 

  • Saramito P, Wachs A (2017) Progress in numerical simulation of yield stress fluid flows. Rheol Acta 56:211–230

    Google Scholar 

  • Scheven UM, Harris R, Johns ML (2007) Intrinsic dispersivity of randomly packed monodisperse spheres. Phys Rev Lett 99:054502

    Google Scholar 

  • Seck MD, Van Landeghem M, Faure P, Rodts S, Cavalié P, Combes R, Keita E, Coussot P (2015) The mechanisms of plaster drying. J Mater Sci 50:2491–2501

    Google Scholar 

  • Seck MD, Keita E, Faure P, Cavalié P, Van Landeghem M, Rodts S, Coussot P (2016) Subflorescence and plaster drying dynamics. Chem Eng Sci 148:203–211

    Google Scholar 

  • Sederman AJ, Johns ML, Alexander P, Gladden LF (1998) Structure-flow correlations in packed beds. Chem Eng Sci 53:2117–2128

    Google Scholar 

  • Sederman AJ, Mantle MD, Buckley C, Gladden LF (2004) MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J Magn Reson 166:182–189

    Google Scholar 

  • Seymour JD, Callaghan PT (1997) Generalized approach to NMR analysis of flow and dispersion in porous media. AIChE J 43:2096–2111

    Google Scholar 

  • Seymour JD, Maneval JE, McCarthy KL, Powell RL, McCarthy MJ (1995) Rheological characterization of fluids NMR velocity spectrum measurements. J Texture Stud 26:89–101

    Google Scholar 

  • Seymour JD, Manz B, Callaghan PT (1999) Pulsed gradient spin echo nuclear magnetic resonance measurements of hydrodynamic instabilities with coherent structure: Taylor vortices. Phys Fluids 11:5

    MATH  Google Scholar 

  • Shim G, Prasad D, Elkins CJ, Eaton JK, Benson MJ (2019) 3D MRI measurements of the effects of wind direction on flow characteristics and contaminant dispersion in a model urban canopy. Environ Fluid Mech 19:851–878

    Google Scholar 

  • Simunek J, He C, Pang L, Bradford SA (2006) Colloid-facilitated solute transport in variably saturated porous media: numerical model and experimental verification. Vadose Zone J 5:1035–1047

    Google Scholar 

  • Sinton SW, Chow AW (1991) NMR flow imaging of fluids and solid suspensions in Poiseuille flow. J Rheol 35:735–772

    Google Scholar 

  • Skuntz ME, Perera D, Maneval JE, Seymour Anderson R (2018) Melt-front propagation and velocity profiles in packed beds of phase-change materials measured by magnetic resonance imaging. Chem Eng Sci 190:164–172

    Google Scholar 

  • Song L, Elimelech M (1993) Dynamics of colloid deposition in porous media: modeling the role of retained particles. Colloid Surf A 73:49–63

    Google Scholar 

  • Stapf S, Packer KJ, Graham RG, Thovert JF, Adler PM (1998) Spatial correlations and dispersion for fluid transport through packed glass beads studied by pulsed field-gradient NMR. Phys Rev E 58:6206

    Google Scholar 

  • Teyssier JJ, Packer KJ, Thovert JF, Adler PM (1997) NMR measurements and numerical simulation of fluid transport in porous solids. AIChE J 43:1653–1661

    Google Scholar 

  • Thiery J, Rodts S, Keita E, Chateau X, Faure P, Courtier-Murias D, Kodger TE, Coussot P (2015) Water transfer and crack regimes in nanocolloidal gels. Phys Rev E 91:042407

    Google Scholar 

  • Thiery J, Keita E, Rodts S, Courtier Murias D, Kodger TE, Pegoraro A, Coussot P (2016) Drying kinetics of deformable and cracking nano-porous gels. Eur Phys J E 39:117

    Google Scholar 

  • Thiery J, Rodts S, Weitz DA, Coussot P (2017) Drying regimes in homogeneous porous media from macro- to nanoscale. Phys Rev Fluids 2:074201

    Google Scholar 

  • Vallatos A, Wilson MCT, Taylor AF, Britton MM (2012) Characterizing stationary and translating vortex flow using magnetic resonance. EPL 99:68001

    Google Scholar 

  • van der Heijden GHA, Huinink HP, Pel L, Kopinga K (2009) Non-isothermal drying of fired-clay brick, an NMR study. Chem Eng Sci 64:3010–3018

    Google Scholar 

  • van der Heijden GHA, Pel L, Huinink HP, Kopinga K (2011) Moisture transport and dehydration in heated gypsum, an NMR study. Chem Eng Sci 66:4241–4250

    Google Scholar 

  • Van Meel PA, Erich SJF, Huinink H, Kopinga K, de Jong J, Adan OCG (2011) Moisture transport in coated wood. Prog Org Coat 72:686–694

    Google Scholar 

  • Varchanis S, Makrigiorgos G, Moschopoulos P, Dimakopoulos Y, Tsamopoulos J (2019) Modeling the rheology of thixotropic elasto-visco-plastic materials. J Rheol 4:609–639

    Google Scholar 

  • Varchanis S, Haward SJ, Hopkins CC, Syrakos A, Shen AQ, Dimakopoulos Y, Tsamopoulos J (2020) Transition between solid and liquid state of yield-stress fluids under purely extensional deformations. PNAS 117:12611–12617

    Google Scholar 

  • Wassenius H, Callaghan PT (2005) NMR velocimetry studies of the steady-shear rheology of a concentrated hard-sphere colloidal system. Eur Phys J E 18:69–84

    Google Scholar 

  • Wiederseiner S, Andreini N, Epely-Chauvin G, Moser G, Monnereau M, Gray J, Ancey C (2011) Experimental investigation into segregating granular flows down chutes. Phys Fluids 23:013301

    Google Scholar 

  • Wiese M, Benders S, Blümich B, Wessling M (2018) 3D MRI velocimetry of non-transparent 3D-printed staggered herringbone mixers. Chem Eng J 343:54–60

    Google Scholar 

  • Wood BD, Apte SV, Liburdy JA, Ziazi RM, He X, Finn JR, Patil VA (2015) A comparison of measured and modeled velocity fields for a laminar flow in a porous medium. Adv Water Resour 85:45–63

    Google Scholar 

  • Yao KM, Habibian MT, Omelia CR (1971) Water and waste water filtration. Concepts and applications. Environ Sci Technol 5:1105–1112

    Google Scholar 

  • Zhang X, Fadoul O, Lorenceau E, Coussot P (2018a) Yielding and flow of soft-jammed systems in elongation. Phys Rev Lett 120:048001

    Google Scholar 

  • Zhang X, Lorenceau E, Bourouina T, Basset P, Oerther T, Ferrari M, Rouyer F, Goyon J, Coussot P (2018b) Wall slip mechanisms in direct and inverse emulsions. J Rheol 62:1495–1513

    Google Scholar 

  • Zhou M, Caré S, Courtier-Murias D, Faure P, Rodts S, Coussot P (2018) Magnetic resonance imaging evidences of the impact of water sorption on hardwood capillary imbibition dynamics. Wood Sci Technol 52:929–955

    Google Scholar 

  • Zhou M, Caré S, King A, Courtier-Murias D, Rodts S, Gerber G, Aimediue P, Bonnet M, Bornert M, Coussot P (2019) Wetting enhanced by water adsorption in hygroscopic plantlike materials. Phys Rev Res 1:033190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Coussot.

Additional information

This paper is dedicated to the memory of my colleague Stéphane Rodts, at the origin of so many developments in NMR in Laboratoire Navier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coussot, P. Progress in rheology and hydrodynamics allowed by NMR or MRI techniques. Exp Fluids 61, 207 (2020). https://doi.org/10.1007/s00348-020-03037-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-03037-y

Navigation