Skip to main content
Log in

Chiral discrimination in a mutated IDH enzymatic reaction in cancer: a computational perspective

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Chiral discrimination in biological systems, such as l-amino acids in proteins and d-sugars in nucleic acids, has been proposed to depend on various mechanisms, and chiral discrimination by mutated enzymes mediating cancer cell signaling is important in current research. We have explored how mutated isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate which in turn is converted to d-2-hydroxyglutatrate (d-2HG) as a preferred product instead of l-2-hydroxyglutatrate (l-2HG) according to quantum chemical calculations. Using transition state structure modeling, we delineate the preferred product formation of d-2HG over l-2HG in an IDH active site model. The mechanisms for the formation of d-2HG over l-2HG are assessed by identifying transition state structures and activation energy barriers in gas and solution phases. The calculated reaction energy profile for the formation of d-2HG and l-2HG metabolites shows a 29 times higher value for l-2HG as compared to d-2HG. Results for second-order Møller–Plesset perturbation theory (MP2) do not alter the observed trend based on Density Functional Theory (DFT). The observed trends in reaction energy profile explain why the formation of D-2HG is preferred over l-2HG and reveal why mutation leads to the formation of d-2HG instead of l-2HG. For a better understanding of the observed difference in the activation barrier for the formation of the two alternative products, we performed natural bond orbital analysis, non-covalent interactions analysis and energy decomposition analysis. Our findings based on computational calculations clearly indicate a role for chiral discrimination in mutated enzymatic pathways in cancer biology.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad S, Routh SB, Kamarthapu V, Chalissery J, Muthukumar S, Hussain T, Kruparani SP, Deshmukh MV, Sankaranarayanan R (2013) Mechanism of chiral proofreading during translation of the genetic code. eLife 2:e01519

    PubMed  PubMed Central  Google Scholar 

  • Badur MG, Muthusamy T, Parker SJ, Ma S, McBrayer SK, Cordes T, Magana JH, Guan KL, Metallo CM (2018) Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Sells. Cell Rep 25(4):1018–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banik SD, Nandi N (2013) Chirality and protein biosynthesis. Top Curr Chem 333:255–305

    CAS  PubMed  Google Scholar 

  • Barron LD (2008) Chirality and life. Space Sci Rev 135(1–4):187–201

    CAS  Google Scholar 

  • Blackmond DG (2011) The origin of biological homochirality. Philos Trans Royal Soc B 366(1580):2878–2884

    CAS  Google Scholar 

  • Breslow R (2011) The origin of homochirality in amino acids and sugars on prebiotic earth. Tetrahedr Lett 52(32):4228–4232

    CAS  Google Scholar 

  • Cairns RA, Mak TW (2013) Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3(7):730–741

    CAS  PubMed  Google Scholar 

  • Cambruzzi E (2017) The role of IDH1/2 mutations in the pathogenesis of secondary glioblastomas O papel das mutações IDH1/2 na patogênese dos glioblastomas secundários. J Bras Patol Med Lab. https://doi.org/10.5935/1676-2444.20170055

    Article  Google Scholar 

  • Chakraborty E (2014) Sacosine as a stage dependant metabolomic marker to detect prostate cancer by using Hptlc. IOSR J Pharm Biol Sci 9:49–52

    Google Scholar 

  • Chen Y, Ma Z, Min L, Li H, Wang B, Zhong J, Dai L (2015) Biomarker identification and pathway analysis by serum metabolomics of lung cancer. Biomed Res Int. https://doi.org/10.1371/journal.pone.0232272

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Liu Y, Xu Y, Wang Y (2017) Analysis on metabolites with small molecule of serum in bone marrow suppression model mice with metabolomics method. Se pu Chin J Chromatogr 35(12):1312–1316

    Google Scholar 

  • Chen M, Yang M-H, Chang M-M, Tyan Y-C, Chen Y-MA (2019) Tumor suppressor gene glycine N-methyltransferase and its potential in liver disorders and hepatocellular carcinoma. Toxicol Appl Pharmacol 378:114607

    CAS  PubMed  Google Scholar 

  • Cohen AL, Holmen SL, Colman H (2013) IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep 13(5):345

    PubMed  PubMed Central  Google Scholar 

  • Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632

    PubMed  PubMed Central  Google Scholar 

  • Corradini R, Sforza S, Tedeschi T, Marchelli R (2007) Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry. Chirality 19(4):269–294

    CAS  PubMed  Google Scholar 

  • D’Alonzo D, Guaragna A, Palumbo G (2011) Exploring the role of chirality in nucleic acid recognition. Chem Biodivers 8(3):373–413

    PubMed  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennington R, Keith T, Millam J et al (2009) GaussView, version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  • Dennis EA (2016) Liberating chiral lipid mediators, inflammatory enzymes, and lipid maps from biological grease. J Biol Chem 291(47):24431–24448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong L, Gong J, Wang Y, He J, You D, Zhou Y, Li Q, Liu Y, Cheng K, Qian J, Weng W, Wang H, Yu M (2019) Chiral geometry regulates stem cell fate and activity. Biomaterials 222:119456

    CAS  PubMed  Google Scholar 

  • Dubois M-A, Grandbois A, Collins SK, Schmitzer AR (2011) Introduction of axial chirality in a planar aromatic ligand results in chiral recognition with DNA. J Mol Recogn 24(2):288–294

    CAS  Google Scholar 

  • Fan J, Ray P, Lu Y, Kaur G, Schwarz JJ, Wan LQ (2018) Cell chirality regulates intercellular junctions and endothelial permeability. Sci Adv 4(10):eaat2111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finley LWS, Zhang J, Ye J, Ward PS, Thompson CB (2013) SnapShot: cancer metabolism pathways. Cell Metab 17(3):466

    CAS  PubMed  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) GAUSSIAN09. Revision E. Gaussian Inc., Wallingford

    Google Scholar 

  • Fujii N, Saito T (2004) Homochirality and life. Chem Rec 4:267–278

    CAS  PubMed  Google Scholar 

  • Gal J (2008) The discovery of biological enantioselectivity: Louis Pasteur and the fermentation of tartaric acid, 1857—a review and analysis 150 yr later. Chirality 12:2045–2054

    Google Scholar 

  • Gal J (2013) Molecular chirality: language, history, and significance. In: Schurig V (ed) Differentiation of enantiomers I. Springer, Berlin, pp 1–20

    Google Scholar 

  • Gao X, Reid MA, Kong M, Locasale JW (2017) Metabolic interactions with cancer epigenetics. Mol Aspects Med 54:50–57

    CAS  PubMed  Google Scholar 

  • Glendening ED, Badenhoop JK, Reed AD, Carpenter JE, Weinhold F (1996) NBO 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  • Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) A generalized synchronous transit method for transition state location. Comput Mater Sci 28(2):250–258

    CAS  Google Scholar 

  • Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, Dang L, Fantin VR, Mak TW (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207(2):339–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hein JE, Blackmond DG (2012) On the origin of single chirality of amino acids and sugars in biogenesis. Acc Chem Res 12:2045–2054

    Google Scholar 

  • Hein JE, Tse E, Blackmond DG (2011) A route to enantiopure RNA precursors from nearly racemic starting materials. Nat Chem 3(9):704–706

    CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 4(1):33–38

    Google Scholar 

  • Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650

    CAS  Google Scholar 

  • Kuchel PW, Pagès G, Naumann C (2013) “Chiral compartmentation” in metabolism: enzyme stereo-specificity yielding evolutionary options. FEBS Lett. https://doi.org/10.1016/j.febslet.2013.05.025

    Article  PubMed  Google Scholar 

  • Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    CAS  Google Scholar 

  • Leonardi R, Subramanian C, Jackowski S, Rock CO (2012) Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 287(18):14615–14620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S (2007) Steric effect: a quantitative description from density functional theory. J Chem Phys 26(24):244103

    Google Scholar 

  • Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Google Scholar 

  • Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhu S (2017) Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration. Acta Biochim Biophys Sin 49(4):289–301

    CAS  PubMed  Google Scholar 

  • Mapuskar KA, Flippo KH, Schoenfeld JD, Riley DP, Strack S, Hejleh TA, Furqan M, Monga V, Domann FE, Buatti JM, Goswami PC, Spitz DR, Allen BG (2017) Mitochondrial superoxide increases age-associated susceptibility of human dermal fibroblasts to radiation and chemotherapy. Cancer Res 77(18):5054–5067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason, S. (1988) Biomolecular homochirality. Chemical Society Reviews

  • Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJF, Bleeker FE (2014) The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta 2:326–341

    Google Scholar 

  • Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions I. J Chem Phys 23(10):1833–1840

    CAS  Google Scholar 

  • Nguyen LA, He H, Pham-Huy C (2006) Chiral drugs: an overview. IJBS, Int J Biomed Sci

    Google Scholar 

  • Oermann EK, Wu J, Guan KL, Xiong Y (2012) Alterations of metabolic genes and metabolites in cancer. Semin Cell Dev Biol 23(4):370–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver DMA, Reddy PH (2019) Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 96:47–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pályi G, Zucchi C, Caglioti L (2004) Progress in biological chirality. Elsevier, Amsterdam

    Google Scholar 

  • Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Bernhard Schlegel H (1993) Combining synchronous transit and quasi-newton methods to find transition States. Israel J Chem. https://doi.org/10.1002/ijch.199300051

    Article  Google Scholar 

  • Sajnani K, Islam F, Smith RA, Gopalan V, Lam AKY (2017) Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie 135:164–172

    CAS  PubMed  Google Scholar 

  • Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio IIC, Cairns RA, Mccracken S, Wakeham A, Haight J, Ten AY, Snow B, Ueda T, Inoue S, Yamamoto K, Ko M, Rao A, Yen KE, Su SM, Mak TW (2012) d-2-hydroxyglutarate produced by mutant Idh1 perturbs collagen maturation and basement membrane function. Genes Dev 26(18):2038–2049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sciacovelli M, Frezza C (2016) Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radical Biol Med 100:175–181

    CAS  Google Scholar 

  • Setchell KDR, Clerici C (2010) Equol: history, chemistry, and formation. J Nutr 140(7):1355S–1362S

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shlomi T, Rabinowitz JD (2013) Cancer mistunes methylation. Nat Chem Biol 9(5):293–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K (2008a) Origin of amino acid homochirality: relationship with the RNA world and origin of tRNA aminoacylation. BioSystems 92(1):91–98

    CAS  PubMed  Google Scholar 

  • Tamura K (2008b) Mechanism of chiral-selective tRNA aminoacylation and the origin of amino acid homochirality. Nucleic Acids Symp Ser 52:415–416

    CAS  Google Scholar 

  • Tamura K (2015) Origins and early evolution of the tRNA molecule. Life 5(4):1687–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094

    CAS  Google Scholar 

  • Tsuji G, Kawakami K, Sasaki S (2013) Enantioselective binding of chiral 1,14-dimethyl[5]helicene-spermine ligands with B- and Z-DNA. Bioorg Med Chem 21(19):6063–6068

    CAS  PubMed  Google Scholar 

  • Urata H (1999) Effect of chirality of ribose on nucleic acid structure and function. Yakugaku Zasshi 119(10):689–709

    CAS  PubMed  Google Scholar 

  • Virani S, Virani S, Colacino JA, Kim JH, Rozek LS (2012) Cancer epigenetics: a brief review. ILAR J 53(3–4):359–369

    PubMed  PubMed Central  Google Scholar 

  • Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell. https://doi.org/10.1016/j.cell.2016.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Waitkus MS, Diplas BH, Yan H (2016) Isocitrate dehydrogenase mutations in gliomas. Neuro-Oncol 18(1):16–26

    CAS  PubMed  Google Scholar 

  • Walters RO, Arias E, Diaz A, Burgos ES, Guan F, Tiano S, Mao K, Green CL, Qiu Y, Shah H, Wang D, Hudgins AD, Tabrizian T, Tosti V, Shechter D, Fontana L, Kurland IJ, Barzilai N, Cuervo AM, Promislow DEL, Huffman DM (2018) Sarcosine is uniquely modulated by aging and dietary restriction in rodents and humans. Cell Rep 25(3):663–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Travins J, De La Barre B, Penard-Lacronique V, Schalm S, Hansen E, Straley K, Kernytsky A, Liu W, Gliser C, Yang H, Gross S, Artin E, Saada V, Mylonas E, Quivoron C, Popovici-Muller J, Saunders JO, Salituro FG, Yan S, Murray S, Wei W, Gao Y, Dang L, Dorsch M, Agresta S, Schenkein DP, Biller SA, Su SM, De Botton S, Yen KE (2013) IDH mutations and tumorigenicity. Mol Cancer Ther 340(6132):622–626

    CAS  Google Scholar 

  • Wei Y, Jiang S, Si M, Zhang X, Liu J, Wang Z, Cao C, Huang J, Huang H, Chen L, Wang S, Feng C, Deng X, Jiang L (2019) Chirality controls mesenchymal stem cell lineage diversification through mechanoresponses. Adv Mater 31(16):e1900582

    PubMed  Google Scholar 

  • Weipeng H, Yonghua Z, Lin CAO, Di CAO, Zhongxiang Z, Jing JIN (2018) Metabolomics study on the differences of endogenous small molecule between A549/DDP and A549 cells based on high solution UPLC-TOF-MS. Zhongguo Fei Ai Za Zhi 21(8):571–577

    Google Scholar 

  • Williams T, Kelley C (2010) Gnuplot 4.4: an interactive plotting program. …Documentation, https://Sourceforge.Net/Projects/Gnuplot.

  • Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Yang X, Sun L, Sun S, Huang X, Zhou D, Li T, Zhang W, Abumrad NA, Zhu X, He S, Su X (2019) Fatty acid 2-hydroxylation inhibits tumor growth and increases sensitivity to cisplatin in gastric cancer. EBioMedicine 41:256–267

    PubMed  PubMed Central  Google Scholar 

  • Yen C-H, Lin Y-T, Chen H-L, Chen S-Y, Chen Y-MA (2013) The multi-functional roles of GNMT in toxicology and cancer. Toxicol Appl Pharmacol 266(1):67–75

    CAS  PubMed  Google Scholar 

  • Yoon TP, Jacobsen EN (2003) Privileged chiral catalysts. Science 299(5613):1691–1693

    CAS  PubMed  Google Scholar 

  • Zhang Z, Gao B, He Z, Li L, Zhang Q, Kaziem AE, Wang M (2019) Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite. Pestic Biochem Physiol 160:112–118

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Science and Technology (DST), Science and Engineering Research Board (SERB), India (Ref: YSS/2014/001019). We thank Dr. Venkatesan S. Thimmakondu, San Diego State University, San Diego for helping us to plot the NCI signatures. We also thank anonymous referees for critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnan Thirumoorthy.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thamim, M., Thirumoorthy, K. Chiral discrimination in a mutated IDH enzymatic reaction in cancer: a computational perspective. Eur Biophys J 49, 549–559 (2020). https://doi.org/10.1007/s00249-020-01460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01460-x

Keywords

Navigation