Skip to main content
Log in

Spatial Distribution of Organic Matter and Nitrogen in the Entic Podzols of the Prioksko-Terrasnyi Reserve and Its Relationship with the Structure of Forest Phytocenoses

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Estimates of the spatial heterogeneity of the organic matter distribution in forest soils determined by the influence of the species and spatial structure of phytocenoses are relevant for many environmental problems, including the calculation of carbon sinks and modeling of the dynamics of forest ecosystems. We analyzed the data on the organic carbon (Corg) and total nitrogen (Ntot) contents in the O (forest litter) and AY (humus) horizons of Entic Podzols in the Prioksko-Terrasnyi Reserve (54.89° N, 37.56° E). The studied site is located in a coniferous–deciduous forest formed after overgrowing of the cutting area of pine stands. We sampled the O and AY horizons along transects between trees of different species, i.e., near the trunks, under the crown, and in the intercrown space. The contents of Corg and Ntot in the O horizon varied within 17.6–44.9 and 0.84–1.79%, respectively. The ranges for the AY horizon were greater: 0.71–8.5% (Corg) and 0.035–0.33% (Ntot). The relationship between the contents of Corg and Ntot in the O and AY horizons was close to linear (rs = 0.72 and rs = 0.96, respectively). We also obtained similar C : N ratios for the both horizons. The litter thickness and the content of Ntot in the O horizon, as well as the content of Corg in the AY horizon, significantly differed in different parts of the transects (P < 0.05). The differences in the litter thickness and the Corg content in the O horizon under the crowns of different tree species were also significant. In samples from the AY horizon taken in intercrown spaces, the Ntot content correlated with the demand of plant species of the ground cover for soil fertility. The data obtained reflect the influence of specific features of spatial patterns of surface and root litterfall in multispecies communities of mixed forest stands on the spatial variability of Corg and Ntot contents in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. V. Biryukov, I. M. Ryzhova, A. A. Gunina, L. G. Bogatyrev, and E. A. Pogozheva, “Stabilization of organic matter in soil lysimeters,” Moscow Univ. Soil Sci. Bull. 69, 55–61 (2014). https://doi.org/10.3103/S0147687414020021

    Article  Google Scholar 

  2. E. F. Vedrova, “Model experiments for identification of a role of pine in development of soil color diversity in forest,” in Study and Modeling of Pedogenesis in Forest Biogeocenosises (Nauka, Novosibirsk, 1979), pp. 30–42.

    Google Scholar 

  3. E. L. Vorobeichik and P. G. Pishchulin, “Industrial pollution reduces the effect of trees on forming the patterns of heavy metal concentration fields in forest litter,” Russ. J. Ecol. 47, 431–441 (2016).

    Article  Google Scholar 

  4. P. Ya. Grabarnik, V. N. Shanin, O. G. Chertov, I. V. Priputina, S. S. Bykhovets, B. S. Petropavlovskii, P. V. Frolov, E. V. Zubkova, M. P. Shashkov, and G. G. Frolova, “Modeling of dynamics of forest ecosystems as a tool for forecasting and control of forests,” Lesovedenie, No. 6, 488–500 (2019).

    Google Scholar 

  5. A. A. Dymov, K. S. Bobkova, V. V. Tuzhilina, and D. A. Rakina, “Forest litter in indigenous spruce forest and larch-coniferous plantations,” Izv. Vyssh. Uchebn. Zaved., Lesn. Zh., No. 3, 7–18 (2012).

  6. Ph. I. Zemskov, V. S. Galkin, N. A. Anokhina, L. G. Bogatyrev, A. N. Demidova, N. G. Prilepsky, N. I. Zhilin, and A. I. Benediktova, “Methodical aspects of investigation of dynamic of litter fall input under conditions of stationary soil lysimeters,” Moscow Univ. Soil Sci. Bull. 72, 7–12 (2017). .https://doi.org/10.3103/S0147687417010082

    Article  Google Scholar 

  7. I. V. Ivanov, I. G. Shadrikov, Zh. S. Asainova, and L. M. Dmitrakov, “Spatiotemporal aspects of the relationships between soil and vegetation covers at the southern taiga/mixed forest boundary under anthropogenic impact,” in Soil Processes and Spatiotemporal Organization of Soils (Nauka, Moscow, 2006), pp. 78–97.

    Google Scholar 

  8. E. A. Ivanova and N. V. Lukina, “Dynamics of the mass and fractional composition of wood litter in shrub–lichen pine forests under aerial and technogenic pollution,” Lesovedenie, No. 5, 47–58 (2017).

    Google Scholar 

  9. V. S. Ipatov and L. A. Kirikova, “Phytogenic field of Picea abies (Pinaceae) in green-moss pine forests,” Bot. Zh. 86 (5), 94–103 (2001).

    Google Scholar 

  10. L. O. Karpachevskii, Forest and Forest Soils (Lesnaya Prom-st’, Moscow, 1981) [in Russian].

    Google Scholar 

  11. L. O. Karpachevskii, Color Diversity of Soil Cover in Forest Biogeocenosises (Moscow State University, Moscow, 1977) [in Russian].

    Google Scholar 

  12. L. O. Karpachevskii, T. A. Zubkova, L. N. Tashninova, and R. N. Rudenko, “Soil cover and parcellar structure of forest biogeocenosis,” Lesovedenie, No. 6, 107–113 (2007).

    Google Scholar 

  13. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  14. M. A. Kuznetsov, “Effect of the conditions of decomposition and falloff composition on characteristics and reserves of forest litter in the middle-taiga blueberry–sphagnum spruce forest,” Lesovedenie, No. 6, 54–60 (2010).

    Google Scholar 

  15. V. Kh. Lebedeva, M. Yu. Tikhodeeva, and V. S. Ipatov, “Wood canopy effect on the ground cover species in blueberry–green moss spruce forest,” Bot. Zh. 90 (3), 400–410 (2005).

    Google Scholar 

  16. N. V. Lukina and M. A. Orlova, “Nutritional regime of soils in old-growth forests of the Kola Peninsula,” Lesovedenie, No. 1, 11–22 (2008).

    Google Scholar 

  17. N. V. Lukina, M. A. Orlova, and L. G. Isaeva, “Forest soil fertility: the base of relationships between soil and vegetation,” Contemp. Probl. Ecol. 4, 725–733 (2011).

    Article  Google Scholar 

  18. A. V. Mamai, N. G. Fedorets, and A. L. Stepanov, “Nitrogen fixation and denitrification in podzolic soils of coniferous and small-leaved forests of the taiga subzone of Karelia,” Lesovedenie, No. 1, 66–74 (2013).

    Google Scholar 

  19. E. Yu. Milanovskii and E. V. Shein, “Functional role of amphiphilic humus components in humus structure formation and soil genesis,” Eurasian Soil Sci. 35, 1064–1075 (2002).

    Google Scholar 

  20. Modeling of the Dynamics of Organic Matter in Forest Ecosystems, Ed. by V. N. Kudeyarov (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  21. Monitoring of the Biological Diversity of Forests: Methodology and Methods, Ed. by A. S. Isaev (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  22. M. A. Orlova, N. V. Lukina, I. O. Kamaev, V. E. Smirnov, and T. V. Kravchenko, “Mosaicity of forest biogeocenoses and soil fertility,” Lesovedenie, No. 6, 39–48 (2011).

    Google Scholar 

  23. M. A. Orlova, N. V. Lukina, V. E. Smirnov, and N. A. Artemkina, “The influence of spruce on acidity and nutrient content in soils of Northern Taiga dwarf shrub–green moss spruce forests,” Eurasian Soil Sci. 49, 1276–1287 (2016). https://doi.org/10.1134/S1064229316110077

    Article  Google Scholar 

  24. M. A. Orlova, N. V. Lukina, V. E. Smirnov, D. A. Krasnov, and I. O. Kamaev, “Fertility of soils under spruce forests of the Khibiny Mountains,” Eurasian Soil Sci. 45, 612–624 (2012). https://doi.org/10.1134/S1064229312060087

    Article  Google Scholar 

  25. Evaluation and Conservation of Biological Diversity of Forest Cover in Nature Reserves of European Russia, Ch. 4: Prioksko-Terrasny Nature Reserve (Nauchnyi Mir, Moscow, 2000), pp. 73–103.

  26. M. A. Podvezennaya and I. M. Ryzhova, “The relationships between the variability of soil carbon reserves and the spatial structure of the plant cover in forest biogeocenoses,” Moscow Univ. Soil Sci. Bull. 65, 139–144 (2010). https://doi.org/10.3103/S0147687410040010

    Article  Google Scholar 

  27. S. M. Razgulin and L. V. Voronin, “Role of fine tree roots in the nitrogen cycle of boreal forests,” Contemp. Probl. Ecol. 11, 771–778 (2018). https://doi.org/10.1134/S1995425518070090

    Article  Google Scholar 

  28. S. M. Razumovskii, Transactions on Ecology and Biogeography: Collection of Scientific Research Works (KMK, Moscow, 2011) [in Russian].

    Google Scholar 

  29. O. V. Semenyuk and M. A. Il’yashenko, “Spatial variability of the soil properties of the uneven-aged pine forest stands of the landscape garden of the Arkhangelsk Estate,” Moscow Univ. Soil Sci. Bull. 68, 20–25 (2013).

    Article  Google Scholar 

  30. O. V. Smirnova, A. A. Aleinikov, A. A. Smikolennykh, A. D. Bovkunov, M. V. Zaprudina, and N. S. Smirnov, “Spatial heterogeneity of soil-vegetation cover of dark coniferous forests of the Pechora-Ilych Nature Reserve,” Lesovedenie, No. 6, 67–78 (2011).

    Google Scholar 

  31. V. M. Telesnina, L. G. Bogatyrev, A. I. Benediktova, Ph. I. Zemskov, and M. N. Maslov, “The dynamics of plant debris input and some properties of forest litters during postagrogenic reforestation under the conditions of southern taiga,” Moscow Univ. Soil Sci. Bull. 74, 139–145 (2019). https://doi.org/10.3103/S0147687419040082

    Article  Google Scholar 

  32. A. A. Titlyanova and S. V. Shibareva, Forest Litters and Herbaceous Ecosystems (Siberian Brach, Russian Academy of Sciences, Novosibirsk, 2012) [in Russian].

  33. S. Ya. Trofimov, E. I. Dorofeeva, A. M. Tarko, A. D. Fokin, G. A. Smolina, T. A. Sokolova, I. I. Tolpeshta, and A. V. Luzikov, “Soil organic matter as a characteristic of functional organization of soil system,” in Regulatory Role of Soil in Functions of Taiga Ecosystems (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  34. V. P. Uchvatov, “Landscapes of the Prioksko-Terrasnyi Biospheric Nature Reserve,” in Landscape-Geochemical Principles of Background Monitoring (Nauka, Moscow, 1989), pp. 103–117.

    Google Scholar 

  35. V. M. Fridland, Geography, Genesis, and Evolution of Soil Cover (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  36. P. V. Frolov, E. V. Zubkova, and A. S. Komarov, “A cellular automata model for a community comprising two plant species of different growth forms,” Biol. Bull. (Moscow) 42, 279–286 (2015).

    Article  Google Scholar 

  37. L. G. Khanina, I. S. Grozovskaya, and V. E. Smirnov, “Analysis of database on biomass of forest soil surface cover for modeling of dynamics in circular models of forest ecosystems,” Khvoinye Boreal’noi Zony 31 (1–2), 22–29 (2013).

    Google Scholar 

  38. O. G. Chertov, P. Ya. Grabarnik, V. N. Shanin, S. S. Bykhovets, B. S. Petropavlovskii, I. V. Priputina, P. V. Frolov, and E. V. Zubkova, “Dynamic models of terrestrial ecosystems for quantitative evaluation of plant productivity,” Rastit. Resur., No. 2, 151–169 (2019).

  39. O. V. Chestnykh, D. G. Zamolodchikov, and A. I. Utkin, “Total reserves of biological carbon and nitrogen in soils of the forest fund of Russia,” Lesovedenie, No. 4, 30–42 (2004).

    Google Scholar 

  40. V. N. Shanin, M. P. Shashkov, N. V. Ivanova, S. S. Bykhovets, and P. Ya. Grabarnik, “The structure of wood stands and microclimate conditions under forest canopy on permanent experimental site in the Prioksko-Terrasnyi Nature Reserve,” Tr. Prioksko-Terrasnogo Zapoved., No. 7, 72–85 (2018).

  41. L. Augusto, J. Ranger, D. Binkley, and A. Rothe, “Impact of several common tree species of European temperate forests on soil fertility,” Ann. For. Sci. 59, 233–253 (2002). https://doi.org/10.1051/forest:2002020

    Article  Google Scholar 

  42. B. Bengston, U. Falkengren-Grerup, and G. Bengtsson, “Spatial distributions of plants and gross N transformation rates in a forest soil,” J. Ecol. 94 (4), 754–764 (2006). https://doi.org/10.1111/j.1365-2745.2006.01143.x

    Article  Google Scholar 

  43. A. Bolte and I. Villanueva, “Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.),” Eur. J. For. Res. 125, 15–26 (2006). https://doi.org/10.1007/s10342-005-0075-5

    Article  Google Scholar 

  44. A. Bruckner, E. Kandeler, and C. Kampichler, “Plot-scale spatial patterns of soil water content, pH, substrate-induced respiration and N mineralization in a temperate coniferous forest,” Geoderma 93, 207–223 (1999). https://doi.org/10.1016/S0016-7061(99)00059-2

    Article  Google Scholar 

  45. E. Gömöryová, J. Gregor, V. Pichler, and D. Gömöry, “Spatial patterns of soil microbial characteristics and soil moisture in a natural beech forest,” Biologia 61 (19), 329–333 (2006).

    Article  Google Scholar 

  46. W. S. Gordon and R. B. Jackson, “Nutrient concentrations in fine roots,” Ecology 81 (1), 275–280 (2000).

    Article  Google Scholar 

  47. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (US Food and Agriculture Organization, Rome, 2014).

    Google Scholar 

  48. A. Komarov, O. Chertov, S. Bykhovets, C. Shaw, M. Nadporozhskaya, P. Frolov, M. Shashkov, V. Shanin, P. Grabarnik, I. Priputina, and E. Zubkova, “Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing,” Ecol. Model. 345, 113–124 (2017). https://doi.org/10.1016/j.ecolmodel.2016.08.007

    Article  Google Scholar 

  49. Y. Kooch and M. Bayranvand, “Composition of tree species can mediate spatial variability of C and N cycles in mixed beech forests,” For. Ecol. Manage. 401, 55–64 (2017). https://doi.org/10.1016/j.foreco.2017.07.001

    Article  Google Scholar 

  50. M. Lamers, J. Ingwersen, and T. Streck, “Modeling N2O emission from a forest upland soil: A procedure for an automatic calibration of the biogeochemical model Forest-DNDC,” Ecol. Model. 205, 52–58 (2007). https://doi.org/10.1016/j.ecolmodel.2007.02.007

    Article  Google Scholar 

  51. D. J. Lawrence, N. Luckai, W. L. Meyer, C. Shahi, A. J. Fazekas, P. Kesanakurti, and S. Newmaster, “Distribution of white spruce lateral fine roots as affected by the presence of trembling aspen: root mapping using simple sequence repeat DNA profiling,” Can. J. Forest Res. 42 (8), 1566–1576 (2012). https://doi.org/10.1139/x2012-082

    Article  Google Scholar 

  52. D. F. Levia and S. Germer, “A review of stem flow generation dynamics and stemflow-environment interactions in forests and shrub lands,” Rev. Geophys. 53 (3), 673–714 (2015).

    Article  Google Scholar 

  53. J. M. Levine and J. HilleRisLambers, “The importance of niches for the maintenance of species diversity,” Nature 461, 254–257 (2009). https://doi.org/10.1038/nature08251

    Article  Google Scholar 

  54. J. B. Martiny, J. E. Eisen, K. Penn, S. D. Allison, and M. C. Horner-Devine, “Drivers of bacterial β-diversity depend on spatial scale,” Proc. Natl. Acad. Sci. U.S.A. 108, 7850–7854 (2011). https://doi.org/10.1073/pnas.1016308108

    Article  Google Scholar 

  55. A. Pommerening and P. Grabarnik, Individual-Based Methods in Forest Ecology and Management (Springer-Verlag, New York, 2019). https://doi.org/10.1007/978-3-030-24528-3

    Book  Google Scholar 

  56. R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

    Google Scholar 

  57. V. Shanin, R. Mäkipää, M. Shashkov, N. Ivanova, K. Shestibratov, S. Moskalenko, L. Rocheva, P. Grabarnik, K. Bobkova, A. Manov, A. Osipov, E. Burnasheva, and M. Bezrukova, “New procedure for the simulation of belowground competition can improve the performance of forest simulation models,” Eur. J. For. Res. 134, 1055–1074 (2015). https://doi.org/10.1007/s10342-015-0909-8

    Article  Google Scholar 

  58. W. L. Strong and G. H. La Roi, “Root-system morphology of common boreal forest trees in Alberta, Canada,” Can. J. For. Res. 13 (6), 1164–1173 (1983). https://doi.org/10.1139/x83-155

    Article  Google Scholar 

  59. P. Wallman, M. Svensson, H. Sverdrup, and S. Belyazid, “ForSAFE—an integrated process-oriented forest model for long-term sustainability assessments,” For. Ecol. Manage. 207 (1–2), 19–36 (2005). https://doi.org/10.1016/j.foreco.2004.10.016

    Article  Google Scholar 

  60. F. Yang, J. Tian, H. Fang, J. Gao, X. Zhang, G. Yu, and Y. Kuzyakov, “Spatial heterogeneity of microbial community and enzyme activities in a broad-leaved Korean pine mixed forest,” Eur. J. Soil Biol. 88, 65–72 (2018).https://doi.org/10.1016/j.ejsobi.2014.12.001

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the administration of the Prioksko-Terrasnyi State Natural Biosphere Reserve for the opportunity to perform field researches in its area. We are also grateful to our colleagues from the Laboratory of Ecosystem Modeling of the Institute of Physicochemical and Biological Problems of Soil Science, the Russian Academy of Sciences, for helping in field work.

Funding

The studies of the spatial distribution of Corg and Ntot in Entic Podzols of the Prioksko-Terrasnyi Reserve were supported by the Russian Science Foundation, project no. 18-14-00362. Data on the distribution of physicochemical characteristics of soils were obtained by IP and TM within the framework of the researches of the IPBPSS of RAS (AAAA-A18-118013190176-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Priputina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Bel’chenko

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priputina, I.V., Frolova, G.G., Shanin, V.N. et al. Spatial Distribution of Organic Matter and Nitrogen in the Entic Podzols of the Prioksko-Terrasnyi Reserve and Its Relationship with the Structure of Forest Phytocenoses. Eurasian Soil Sc. 53, 1021–1032 (2020). https://doi.org/10.1134/S1064229320080128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320080128

Keywords:

Navigation