Skip to main content
Log in

Storage of ‘Cox Orange Pippin’ Apple Severely Affected by Watercore

Glasigkeit schränkt die Lagerfähigkeit der Apfelsorte ‘Cox Orange Pippin’ stark ein

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Watercore is a typical physiological disorder of apples and can normally induce the development of related internal disorders during storage. The aim of this study was to investigate the disappearance of watercore, the development of internal storage disorders (ISD) and the maintenance of quality traits of ‘Cox Orange Pippin’ apple during 6 months storage at 3 °C (±0.3 °C) under the following storage conditions: Regular air (RA); rapid storage at 1.5 kPa O2 plus 1.5 kPa CO2; 20 d pre-storage in air at 10 °C followed by storage at 1.5 kPa O2 plus 1.5 kPa CO2; 20 d delayed in the pull down of oxygen partial pressure (p) at 3 °C followed by storage at 1.5 kPa O2 plus 1.5 kPa CO2; and the rapid storage at 3.0 kPa O2 plus <0.2 kPa CO2. At storage end, watercore disappeared faster in RA-stored fruit; however, these fruit were softer, yellower and lower in acidity and showed the highest ISD index (40.0). The rapid storage under 1.5 kPa O2 plus 1.5 kPa CO2 resulted in fruit without ISD, higher firmness, higher acidity, greener skin colour, and a watercore index of 7.5 at storage end. Delayed CA-stored fruit did not keep satisfactory quality traits, and resulted in high watercore (7.6) and ISD indexes (6.9). A similar behaviour to the delayed CA-stored fruit, was observed in apple rapid stored at 3.0 kPa O2 plus <0.2 kPa CO2 and in fruit subjected to 20 d pre-storage in air at 10 °C. The fruit specific weight decreased from 0.89 at harvest time to 0.82 at storage end, but no significant differences were observed between treatments. A positive correlation (r = 0.91) was found between the fruit specific weight and the severity of watercore. In conclusion, the rapid storage of severe watercored ‘Cox Orange Pippin’ apple at 1.5 kPa O2 plus 1.5 kPa CO2 maintained higher firmness, higher acidity and greener skin colour, without occurrence of ISD after 6 months’ storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Argenta LC, Fan X, Mattheis J (2002) Impact of watercore on gas permeance and incidence of internal disorders in ‘Fuji’ apples. Postharvest Biol Technol 24:113–122

    Article  Google Scholar 

  • Bangerth F (1973) Investigations upon Ca related physiological disorders. Phytopathol Z 77:20–37

    Article  Google Scholar 

  • Brackmann A, Saquet AA (1999) Low ethylene and rapid CA storage of ‘Gala‘ apples. Acta Hortic 485:79–83

    Article  CAS  Google Scholar 

  • Brackmann A, Neuwald DA, Steffens CA (2001) Storage of ‘Fuji’ apples with watercore incidence. Rev Bras Frutic 23:526–531

    Article  Google Scholar 

  • Castro E, Biasi B, Mitcham E, Tustin S, Tanner D, Jobling J (2007) Carbon dioxide-induced flesh browning in ‘Pink Lady’ apples. J Am Soc Hortic Sci 132:713–719

    Article  Google Scholar 

  • Dart JA, Newman SM (2005) Watercore of apples. Primefact 49:1–2

    Google Scholar 

  • DeEll JR, Ehsani-Moghaddam B (2012) Delayed controlled atmosphere storage affects storage disorders of ‘Empire’ apples. Postharvest Biol Technol 67:167–171

    Article  CAS  Google Scholar 

  • Dražeta L, Lang A, Hall AJ, Volz RK, Jameson PE (2004) Air volume measurement of `Braeburn’ apple fruit. J Exp Bot 55(399):1061–1069

    Article  Google Scholar 

  • Faust M, Shear CB, Williams MW (1969) Disorders of carbohydrate metabolism of apples (watercore, internal breakdown, low temperature and carbon dioxide injuries). Bot Rev 35:168–194

    Article  Google Scholar 

  • Ferguson I, Volz R, Woolf A (1999) Preharvest factors affecting physiological disorders of fruit. Postharvest Biol Technol 15:255–262

    Article  Google Scholar 

  • Fidler JC, Wilkinson BG, Edney KL, Sharples RO (1973) The biology of apple and pear storage. Commonwealth Agricultural Bureaux, East Malling, Maidstone, Kent

    Google Scholar 

  • Gao Z, Jayanty S, Beaudry R, Loescher WH (2005) Sorbitol transporter expression in apple sink tissues: implications for fruit sugar accumulation and watercore development. J Am Soc Hortic Sci 130(2):261–268

    Article  CAS  Google Scholar 

  • Harb J, Kittemann D, Neuwald DA, Hoffmann T, Schwab W (2013) Correlation between changes in polyphenol composition of peels and incidence of CO2 skin burning of ‘Cameo’ apples as influenced by controlled atmosphere storage. J Agric Food Chem 61:3624–3630

    Article  CAS  Google Scholar 

  • Ho QT, Verboven P, Verlinden BE, Schenk A, Delele MA, Rolletschek H, Vercammen J, Nicolai BM (2010) Genotype effects on internal gas gradients in apple fruit. J Exp Bot 61(10):2745–2755

    Article  CAS  Google Scholar 

  • Höhn E, Jampen M, Dätwyler D (1996) Kavernenbildung in ‘Conférence‘—Risikoverminderung. Schweiz Z Obst Weinbau 7:180–181

    Google Scholar 

  • Kupferman E (2002) Observations on harvest maturity and storage of apples and pears. Postharvest Information Network, Washington State University, Wenatchee, pp 1–8

    Google Scholar 

  • Lau OL (1985) Storage procedures, low oxygen, and low carbon dioxide atmospheres on storage quality of ‘Golden Delicious’ and ‘Delicious’ apples. J Am Soc Hortic Sci 110:541–547

    CAS  Google Scholar 

  • Lau OL (1990) Tolerance of three apple cultivars to ultra-low levels of oxygen. HortScience 25(11):1412–1414

    Article  CAS  Google Scholar 

  • Lau OL, Meheriuk M, Olsen KL (1983) Effects of rapid CA, high CO2, and CaCl2 treatment on storage behaviour of ‘Golden Delicious’ apples. J Am Soc Hortic Sci 108:230–233

    CAS  Google Scholar 

  • Little CR, Peggie ID (1987) Storage injury of pome fruit caused by stress levels of oxygen, carbon dioxide, temperature, and ethylene. HortScience 22:783–790

    Google Scholar 

  • Marlow GC, Loescher WH (1984) Watercore. Hortic Rev 6:189–251

    CAS  Google Scholar 

  • Marlow GC, Loescher WH (1985) Sorbitol metabolism, the climacteric and watercore in apples. J Am Soc Hortic Sci 110:676–680

    CAS  Google Scholar 

  • Meheriuk M, Prange RK, Lidster PD, Porritt SW (1994) Postharvest disorders of apples and pears. Publication 1737/E. Agriculture and Agri-Food Canada, Ottawa

    Google Scholar 

  • Melado-Herreros A, Muñoz-García MA, Blanco A, Val J, Fernández-Valle ME, Barreiro P (2013) Assessment of watercore development in apples with MRI: Effect of fruit location in the canopy. Postharvest Biol Technol 86:125–133

    Article  Google Scholar 

  • Neuwald D, Kittemann D, Streif J, Andrade CAW (2012) Watercore dissipation in ‘Fuji’ apples by postharvest temperature conditioning treatments. Acta Hortic 934:1097–1102

    Article  Google Scholar 

  • Park YM, Blanpied GD, Joswiak Z, Liu FW (1993) Postharvest studies of resistance to gas diffusion in ‘McIntosh’ apples. Postharvest Biol Technol 2(4):329–339

    Article  CAS  Google Scholar 

  • Rajapakse NC, Banks NH, Hewett EW, Cleland DJ (1990) Development of oxygen concentration gradients in flesh tissues of bulky plant organs. J Am Soc Hortic Sci 115(5):793–797

    Article  CAS  Google Scholar 

  • Saquet AA (2016) Storability of ‘Jonagold’ apple under extreme controlled atmosphere conditions. J Agric Sci Technol B 6:262–268

    CAS  Google Scholar 

  • Saquet AA, Streif J (2006) Fermentative metabolism of ‘Conference’ pear under various storage conditions. J Hortic Sci Biotechnol 81(5):910–914

    Article  CAS  Google Scholar 

  • Saquet AA, Streif J, Bangerth F (2000) Changes in ATP, ADP and pyridine nucleotides levels related to the incidence of physiological disorders in ‘Conference’ pears and ‘Jonagold’ apples during controlled atmosphere storage. J Hortic Sci Biotechnol 75(2):243–249

    Article  CAS  Google Scholar 

  • Saquet AA, Streif J, Bangerth F (2003a) Reducing internal browning disorders in ‘Braeburn’ apples by delayed controlled atmosphere storage, and some related physiological and biochemical changes. Acta Hortic 628:453–458

    Article  Google Scholar 

  • Saquet AA, Streif J, Bangerth F (2003b) Energy metabolism and membrane lipid alterations in relation to brown heart development in ‘Conference’ pears during delayed controlled atmosphere storage. Postharvest Biol Technol 30:123–132

    Article  CAS  Google Scholar 

  • Sitton JW, Patterson ME (1992) Effect of high-carbon dioxide and low-oxygen controlled atmospheres on postharvest decay of apples. Plant Dis 76(10):992–995

    Article  CAS  Google Scholar 

  • Streif J, Saquet AA (2003) Internal flesh browning of ‘Elstar‘ apples as influenced by pre- and postharvest factors. Acta Hortic 599:523–527

    Article  Google Scholar 

  • Wright AH, Delong JM, Arul J, Prange RK (2015) The trend toward lower oxygen levels during apple (Malus x domestica Borkh) storage—A review. J Hortic Sci Biotechnol 90(1):1–13

    Article  CAS  Google Scholar 

  • Yamada H, Ohmura H, Arai C, Terui M (1994) Effect of preharvest fruit temperature on ripening, sugars, and watercore occurrence in apples. J Am Soc Hortic Sci 119(6):1208–1214

    Article  CAS  Google Scholar 

  • Zanella A (2003) Control of apple superficial scald and ripening—a comparison between 1‑methylcyclopropene and diphenylamine postharvest treatments, initial low oxygen stress and ultra low oxygen storage. Postharvest Biol Technol 27(1):69–78

    Article  Google Scholar 

  • Zupan A, Mikulic-Petkovsek M, Stamparand F, Veberic R (2016) Sugar and phenol content in apple with or without watercore. J Sci Food Agric 96:2845–2850

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. S.T. de Freitas (Brazilian Agricultural Research Corporation—Embrapa, Petrolina, PE, Brazil) for reading the text and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Arriel Saquet.

Ethics declarations

Conflict of interest

A.A. Saquet declares that he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saquet, A.A. Storage of ‘Cox Orange Pippin’ Apple Severely Affected by Watercore. Erwerbs-Obstbau 62, 391–398 (2020). https://doi.org/10.1007/s10341-020-00520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-020-00520-y

Keywords

Schlüsselwörter

Navigation