Skip to main content
Log in

Modeling Crude Oil Fate and Transport in Freshwater

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Accidental contaminant spills in surface freshwater drinking sources put the public at risk, lower consumer confidence, and are costly to clean up. Although crude oil is commonly transported in close proximity to drinking water supplies, much of the research has focused on the fate and transport of crude oil in marine and riverine systems, not reservoirs. This study illustrates an application of a proactive spill modeling method to simulate crude oil fate and transport in a reservoir using a combination of laboratory and modeling investigation. Dissolution trends of benzene, toluene, and ethylbenzene from hypothetical accidental input scenarios were estimated by solid-phase micro-extraction combined (SPME) with gas chromatography mass spectrometry (GC/MS) methods. Laboratory dissolution trends informed inputs to a hydrodynamic and water quality model, CE-QUAL-W2, which simulated the fate and transport of the crude oil components within a reservoir with a focus on water quality impacts at the drinking water intake. The method can be applied to proactively quantify and scientifically guide emergency response planning and management of drinking water reservoirs in the event of an accidental crude oil spill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weidhaas, J. L., Dietrich, A. M., DeYonker, N. J., Ryan Dupont, R., Foreman, W. T., Gallagher, D., Gallagher, J. E., Whelton, A. J., & Alexander, W. A. (2016). Enabling science support for better decision-making when responding to chemical spills. J.Environ.Qual, 45(5), 1490–1500.

    Article  CAS  Google Scholar 

  2. Bahadur, R., & Samuels, W. B. (2014). Modeling the fate and transport of a chemical spill in the Elk River, West Virginia. J.Environ.Eng., 141(7), 05014007.

    Article  Google Scholar 

  3. Whelton, A. J., McMillan, L., Connell, M., Kelley, K. M., Gill, J. P., White, K. D., Gupta, R., Dey, R., & Novy, C. (2015). Residential tap water contamination following the freedom industries chemical spill: Perceptions, water quality, and health impacts. Environ.Sci.Technol, 49(2), 813–823.

    Article  CAS  Google Scholar 

  4. Huang, X., Andry, S., Yaputri, J., Kelly, D., Ladner, D. A., & Whelton, A. J. (2017). Crude oil contamination of plastic and copper drinking water pipes. J.Hazard.Mater., 339, 385–394.

    Article  CAS  Google Scholar 

  5. K. Menz. (2016). Oil spill in north Sask. River affecting water supply of 69,000 people. http://saskatoon.ctvnews.ca/oil-spill-in-north-sask-river-affecting-water-supply-of-69-000-people-1.3002015 (7/23, 2017).

  6. Burris, D. R., and W. G. MacIntyre. (1987) Water solubility behavior of hydrocarbon mixtures–implications for petroleum dissolution. Oil in Freshwater: Chemistry, Biology, Countermeasure Technology. Proceedings of the Symposium of Oil Pollution in Freshwater, Edmonton, Alberta, Canada, 85-94. https://doi.org/10.1016/B978-0-08-031862-2.50014-9.

  7. Rossi, S. S., & Thomas, W. H. (1981). Solubility behavior of three aromatic hydrocarbons in distilled water and natural seawater. Environmental Science & Technology, 15(6), 715–716.

    Article  CAS  Google Scholar 

  8. United States Environmental Protection Agency, Office of Emergency and Remedial Response. (1999) Understanding oil spills and oil spill response. EPA-K-93-003.

  9. Sergy, G.A. and Owens, E.H. (2011). Differences and similarities in freshwater and marine shoreline oil spill response.. International Oil Spill Conference Proceedings: March 2011, 2011(1) abs62

  10. Jeznach, L. C., Jones, C., Matthews, T., Tobiason, J. E., & Ahlfeld, D. P. (2016). A framework for modeling contaminant impacts on reservoir water quality. Journal of Hydrology, 537, 322–333.

    Article  CAS  Google Scholar 

  11. Rosen, J. S., Whelton, A. J., McGuire, M. J., Clancy, J. L., Bartrand, T., Eaton, A., Patterson, J., Dourson, M., Nance, P., & Adams, C. (2014). The crude MCHM chemical spill in Charleston, W. Va. Journal-American Water Works Association, 106(9), 65–74.

  12. Mackay, D. (1987). Chemical and physical behaviour of hydrocarbons in freshwater. Oil in Freshwater: Chemistry, Biology, Countermeasure Technology. Pergamon Press, New York, NY 1987. Edited by John H.Vandermeulen and Steve E.Hrudey, 10-21.

  13. Green, J., and Trett, M. W. (1989). The fate and effects of oil in freshwater. Springer Science & Business Media.

  14. Le Floch, S., Guyomarch, J., Merlin, F. X., Stoffyn-Egli, P., Dixon, J., & Lee, K. (2002). The influence of salinity on oil–mineral aggregate formation. Spill Science & Technology Bulletin, 8(1), 65–71.

    Article  Google Scholar 

  15. Jones, L., and Garcia, M. (2018). Development of a rapid response riverine oil-particle-aggregate (OPA) formation, transport, and fate model Journal of Environmental Engineering, 144(12). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001470.

  16. Stevens, C. C., Thibodeaux, L. J., Overton, E. B., Valsaraj, K. T., Nandakumar, K., Rao, A., & Walker, N. D. (2015). Sea surface oil slick light component vaporization and heavy residue sinking: binary mixture theory and experimental proof of concept. Environ.Eng.Sci., 32(8), 694–702.

    Article  CAS  Google Scholar 

  17. Irwin, R., Van Mouwerik, M., Stevens, L., SEESE, M. D., and Basham, W. (1997). Environmental contaminants encyclopedia crude oil entry. National Park Service http://www.Nature.Nps.gov/toxic/crudeoil.Pdf).

  18. Williams, S. D., Ladd, D. E., and Farmer, J. (2005). Fate and transport of petroleum hydrocarbons in soil and ground water at Big South Fork National River and Recreation Area, Tennessee and Kentucky, 2002-2003. US Geological Survey Scientific Investigations Report. No. 2005-5104.

  19. Clark, R. C.; MacLeod, W. (1977). Inputs, transport mechanisms, and observed concentrations of petroleum in the marine environment, Effects of Petroleum on Arctic and Subarctic Marine Environments and Organisms. Acad. Press, New York, 1, 91–223.

  20. Fayemiwo, O. M., Daramola, M. O., & Moothi, K. (2017). BTEX compounds in water–future trends and directions for water treatment. Water SA, 43(4), 602–613.

    Article  CAS  Google Scholar 

  21. Mette, P., Lloyd, L., & Barker, J. F. (1992). Dissolution of Monoaromatic hydrocarbons into groundwater from gasoline-oxygenate mixtures. Environmental Science & Technology, 26(12), 2483–2489. https://doi.org/10.1021/es00036a022.

    Article  Google Scholar 

  22. Akland, G. G. (1993). Exposure of the general population to gasoline. Environ.Health Perspect., 101(Suppl 6), 27–32.

    Article  Google Scholar 

  23. Andelman, J. B. (1985). Human exposures to volatile halogenated organic chemicals in indoor and outdoor air. Environ.Health Perspect., 62, 313–318.

    Article  CAS  Google Scholar 

  24. Beavers, J. D., Himmelstein, J. S., Hammond, S. K., Smith, T. J., Kenyon, E. M., & Sweet, C. P. (1996). Exposure in a household using gasoline-contaminated water: a pilot study. Journal of Occupational and Environmental Medicine, 38(1), 35–38.

    Article  CAS  Google Scholar 

  25. López, E., Schuhmacher, M., & Domingo, J. L. (2008). Human health risks of petroleum-contaminated groundwater. Environmental Science and Pollution Research, 15(3), 278–288.

    Article  Google Scholar 

  26. Shen, H. T., Yapa, P. D., & Petroski, M. E. (1987). A simulation model for oil slick transport in lakes. Water Resources Research, 23(10), 1949–1957.

    Article  CAS  Google Scholar 

  27. Yapa, P. D., Shen, H. T., & Angammana, K. S. (1994). Modeling oil spills in a river—lake system. Journal of Marine Systems, 4(6), 453–471.

    Article  Google Scholar 

  28. Yapa, P. D., & Tao Shen, H. (1994). Modelling river oil spills: a review. Journal of Hydraulic Research, 32(5), 765–782.

    Article  Google Scholar 

  29. Chung, S., & Gu, R. R. (2009). Prediction of the fate and transport processes of atrazine in a reservoir. Environ.Manage., 44(1), 46–61.

    Article  Google Scholar 

  30. Chung, S., & Gu, R. (1998). Two-dimensional simulations of contaminant currents in stratified reservoir. Journal of Hydraulic Engineering, 124(7), 704–711.

    Article  Google Scholar 

  31. Gu, R. R., & Chung, S. (2003). A two-dimensional model for simulating the transport and fate of toxic chemicals in a stratified reservoir. J.Environ.Qual., 32(2), 620–632.

    Article  CAS  Google Scholar 

  32. Gu, R., McCutcheon, S. C., & Wang, P. (1996). Modeling reservoir density underflow and interflow from a chemical spill. Water Resources Research, 32(3), 695–705.

    Article  CAS  Google Scholar 

  33. Martin, P. H., LeBoeuf, E. J., Daniel, E. B., Dobbins, J. P., & Abkowitz, M. D. (2004). Development of a GIS-based spill management information system. J.Hazard.Mater., 112(3), 239–252.

    Article  CAS  Google Scholar 

  34. Eikenberry, S.E., and Davis, L.G. (1976) A technique for estimating the time of travel of water in Indiana streams, US Geological Survey, Water-Resources Investigations Report 76–9.

  35. Westfall, A.O., and Webber, E.E., (1977), Time of travel of solutes in the Tuscarawas River Basin, Ohio, August and September, 1974. U.S. Geological Survey, Water-Resources Investigations Report 77-23.

  36. Cole, T. M., and Wells, S. A. (2017). CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, version 4.0 user manual. U.S. Army Corps of Engineers. Washington, DC.

  37. United States Environmental Protection Agency, Types of crude oil, Retrieved from https://www.epa.gov/emergency-response/types-crude-oil, Accessed March 2019.

  38. Wang, Z., Hollebone, B., Fingas, M., Fieldhouse, B., Sigouin, L., Landriault, M., Smith, P., Noonan, J., Thouin, G., and Weaver, J. W. (2003). Characteristics of spilled oils, fuels, and petroleum products: 1. Composition and properties of selected oils. US EPA Report EPA/600-R/03, 72.

  39. Jeznach, L. C., Tobiason, J. E., & Ahlfeld, D. P. (2014). Modeling conservative contaminant impacts on reservoir water quality. Journal - American Water Works Association, 106(6), E295–E306.

    Article  Google Scholar 

  40. Ward, C. P., Sharpless, C. M., Valentine, D. L., French-McCay, D. P., Aeppli, C., White, H. K., & Reddy, C. M. (2018). Partial photochemical oxidation was a dominant fate of deepwater horizon surface oil. Environmental Science & Technology, 52(4), 1797–1805.

    Article  CAS  Google Scholar 

  41. Dokholyan, B. K., & Magomedov, A. K. (1984). Effect of sodium naphthenate on survival and some physiological-biochemcial parameters of some fishes. Journal of Ichthyology, 23, 125–132.

    Google Scholar 

  42. Holowenko, F. M., MacKinnon, M. D., & Fedorak, P. M. (2002). Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry. Water Research, 36(11), 2843–2855. https://doi.org/10.1016/S0043-1354(01)00492-4.

    Article  CAS  Google Scholar 

  43. Knag, A. C., Verhaegen, S., Ropstad, E., Mayer, I., & Meier, S. (2013). Effects of polar oil related hydrocarbons on steroidogenesis in vitro in H295R cells. Chemosphere., 92(1), 106–115. https://doi.org/10.1016/j.chemosphere.2013.02.046.

    Article  CAS  Google Scholar 

  44. MacKinnon, M. D., & Boerger, H. (1986). Description of two treatment methods for detoxifying oil sands tailings pond water. Water Poll. Res. J. Canada., 21(4), 496–512.

    Article  CAS  Google Scholar 

  45. Rogers, V. V., Wickstrom, M., Liber, K., & MacKinnon, M. D. (2002). Acute and subchronic mammalian toxicity of naphthenic acids from oil sands tailings. Toxicological Sciences, 66, 347–355. https://doi.org/10.1093/toxsci/66.2.347.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Massachusetts Department of Conservation and Recreation (DCR) and the Massachusetts Water Resources Authority (MWRA). The findings are the opinions of the authors and do not represent the official findings of the DCR or MWRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lillian C. Jeznach.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeznach, L.C., Mohan, A., Tobiason, J.E. et al. Modeling Crude Oil Fate and Transport in Freshwater. Environ Model Assess 26, 77–87 (2021). https://doi.org/10.1007/s10666-020-09728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-020-09728-4

Keywords

Navigation