Skip to main content
Log in

On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The analysis of the wave propagation behavior of a sandwich structure with a soft core and multi-hybrid nanocomposite (MHC) face sheets is carried out in the framework of the higher-order shear deformation theory (HSDT). In order to take into account the viscoelastic influence, the Kelvin-Voight model is presented. In this paper, the constituent material of the core is made of an epoxy matrix which is reinforced by both macro- and nano-size reinforcements, namely carbon fiber (CF) and carbon nanotube (CNT). The effective material properties like Young's modulus or density are derived utilizing a micromechanical scheme incorporated with the Halpin–Tsai model. Then, on the basis of an energy-based Hamiltonian approach, the equations of motion are derived. The detailed parametric study is conducted, focusing on the combined effects of the viscoelastic foundation, CNT' weight fraction, core to total thickness ratio, small radius to total thickness ratio, and carbon fiber angle on the wave propagation behavior of sandwich structure. The results show that as well as increasing the phase velocity of the sandwich structure by increasing the wave number, this influence will be much more effective by increasing the damping factor. It is also observed that there is a critical value for the viscoelastic foundation that the relation between wave number and phase velocity will change from direct to indirect. The presented study outputs can be used in ultrasonic inspection techniques and structural health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gao N-S, Guo X-Y, Cheng B-Z, Zhang Y-N, Wei Z-Y, Hou H (2019) Elastic wave modulation in hollow metamaterial beam with acoustic black hole. IEEE Access 7:124141–124146

    Google Scholar 

  2. Gao N, Wei Z, Zhang R, Hou H (2019) Low-frequency elastic wave attenuation in a composite acoustic black hole beam. Appl Acous 154:68–76

    Google Scholar 

  3. Gao N, Zhang Y (2019) A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber. J Vibr Control 25(3):538–548

    Google Scholar 

  4. Gao N, Hou H, Wu JH (2018) A composite and deformable honeycomb acoustic metamaterial. Int J Modern Phys B 32(20):1850204

    Google Scholar 

  5. Gao N, Wu JH, Yu L, Hou H (2016) Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal. Int J Modern Phys B 30(18):1650111

    Google Scholar 

  6. Tian X, Song Z, Wang J (2019) Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology. Soil Dynam Earthquake Eng 126:105813

    Google Scholar 

  7. Mou B, Bai Y, Patel V (2020) Post-local buckling failure of slender and over-design circular CFT columns with high-strength materials. Eng Str 210:110197

    Google Scholar 

  8. Guo C, Hu M, Li Z, Duan F, He L, Zhang Z, Marchetti F, Du M (2020) Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomers. Sens Actuat B Chem 309:127821

    Google Scholar 

  9. Mou B, Li X, Qiao Q, He B, Wu M (2019) Seismic behaviour of the corner joints of a frame under biaxial cyclic loading. Eng Str 196:109316

    Google Scholar 

  10. Mou B, Zhao F, Qiao Q, Wang L, Li H, He B, Hao Z (2019) Flexural behavior of beam to column joints with or without an overlying concrete slab. Eng Str 199:109616

    Google Scholar 

  11. Luo X, Guo J, Chang P, Qian H, Pei F, Wang W, Miao K, Guo S, Feng G (2020) ZSM-5@ MCM-41 composite porous materials with a core-shell structure: Adjustment of mesoporous orientation basing on interfacial electrostatic interactions and their application in selective aromatics transport. Separ Purif Technol 239:116516

    Google Scholar 

  12. Chen H, Zhang G, Fan D, Fang L, Huang L (2020) Nonlinear lamb wave analysis for microdefect identification in mechanical structural health assessment. Measurement 29:108026. https://doi.org/10.1016/j.measurement.2020.108026

  13. Bourada F, Bousahla AA, Tounsi A, Bedia E, Mahmoud S, Benrahou KH, Tounsi A (2020) Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation. Computers Concrete 25(6):485–495

    Google Scholar 

  14. Matouk H, Bousahla AA, Heireche H, Bourada F, Bedia E, Tounsi A, Mahmoud S, Tounsi A, Benrahou K (2020) Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory. Adv Nano Res 8(4):293–305

    Google Scholar 

  15. Chikr SC, Kaci A, Bousahla AA, Bourada F, Tounsi A, Bedia E, Mahmoud S, Benrahou KH, Tounsi A (2020) A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach. Geomechan Eng 21(5):471–487

    Google Scholar 

  16. Refrafi S, Bousahla AA, Bouhadra A, Menasria A, Bourada F, Tounsi A, Bedia E, Mahmoud S, Benrahou KH, Tounsi A (2020) Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations. Computers Concrete 25(4):311–325

    Google Scholar 

  17. Bousahla AA, Bourada F, Mahmoud S, Tounsi A, Algarni A, Bedia E, Tounsi A (2020) Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory. Computers Concrete 25(2):155–166

    Google Scholar 

  18. Bellal M, Hebali H, Heireche H, Bousahla AA, Tounsi A, Bourada F, Mahmoud S, Bedia E, Tounsi A (2020) Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model. Steel Comp Str 34(5):643–655

    Google Scholar 

  19. Kaddari M, Kaci A, Bousahla AA, Tounsi A, Bourada F, Bedia EA, Al-Osta MA (2020) A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis. Computers Concrete 25(1):37

    Google Scholar 

  20. Tounsi A, Al-Dulaijan S, Al-Osta MA, Chikh A, Al-Zahrani M, Sharif A, Tounsi A (2020) A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation. Steel Comp Struc 34(4):511

    Google Scholar 

  21. Addou FY, Meradjah M, Bousahla AA, Benachour A, Bourada F, Tounsi A, Mahmoud S (2019) Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT. Computers Concrete 24(4):347–367

    Google Scholar 

  22. Chaabane LA, Bourada F, Sekkal M, Zerouati S, Zaoui FZ, Tounsi A, Derras A, Bousahla AA, Tounsi A (2019) Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Struc Eng Mechan 71(2):185–196

    Google Scholar 

  23. Mahmoudi A, Benyoucef S, Tounsi A, Benachour A, Adda Bedia EA, Mahmoud S (2019) A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations. J Sandwich Struc Mater 21(6):1906–1929

    Google Scholar 

  24. Al-Furjan MSH, Habibi M, Dw J, Sadeghi S, Safarpour H, Tounsi A, Chen G (2020) A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Computers. https://doi.org/10.1007/s00366-020-01130-8

    Article  Google Scholar 

  25. Sahmani S, Fattahi A, Ahmed N (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Computers 35(4):1173–1189

    Google Scholar 

  26. Khiloun M, Bousahla AA, Kaci A, Bessaim A, Tounsi A, Mahmoud S (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Computers 36(3):807–21. https://doi.org/10.1007/s00366-019-00732-1

  27. Sahmani S, Fattahi A, Ahmed N (2019) Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL. Eng Computers 1–20. https://doi.org/10.1007/s00366-019-00782-5

  28. Khiloun M, Bousahla AA, Kaci A, Bessaim A, Tounsi A, Mahmoud S (2020) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Computers 36(3):807–821

    Google Scholar 

  29. Oyarhossein M, Khiali V, Hosseinmostofi K, Adineh M, Bayatghiasi H (2019) Numerical study of the gap at the base of the bridge on the river flow parameters. 8(8):264–268. https://mpra.ub.uni-muenchen.de/id/eprint/95406

  30. Gao W, Qin Z, Chu F (2020) Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerospace Sci Technol 12:105860. https://doi.org/10.1016/j.ast.2020.105860

  31. Ebrahimi F, Barati MR, Dabbagh A (2016) A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci 107:169–182

    Google Scholar 

  32. Safaei B, Moradi-Dastjerdi R, Qin Z, Behdinan K, Chu F (2019) Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes. J Sandwich Struct Mater 10:99636219848282

    Google Scholar 

  33. Menasria A, Kaci A, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Tounsi A, Bedia EA, Mahmoud S (2020) A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel Comp Struct 36(3):355

    Google Scholar 

  34. Zine A, Bousahla AA, Bourada F, Benrahou KH, Tounsi A, Adda Bedia E, Mahmoud S, Tounsi A (2020) Bending analysis of functionally graded porous plates via a refined shear deformation theory. Computers Concrete 26(1):63–74

    Google Scholar 

  35. Belbachir N, Bourada M, Draiche K, Tounsi A, Bourada F, Bousahla AA, Mahmoud S (2020) Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory. Smart Struct Syst 25(4):409–422

    Google Scholar 

  36. Rahmani MC, Kaci A, Bousahla AA, Bourada F, Tounsi A, Bedia E, Mahmoud S, Benrahou KH, Tounsi A (2020) Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory. Computers Concrete 25(3):225–244

    Google Scholar 

  37. Boussoula A, Boucham B, Bourada M, Bourada F, Tounsi A, Bousahla A, Tounsi A (2019) A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates. Smart Struct Syst

  38. Abualnour M, Chikh A, Hebali H, Kaci A, Tounsi A, Bousahla AA, Tounsi A (2019) Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory. Computers Concrete 24(6):489–498

    Google Scholar 

  39. Belbachir N, Draich K, Bousahla AA, Bourada M, Tounsi A, Mohammadimehr M (2019) Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings. Steel Comp Struct 33(1):81–92

    Google Scholar 

  40. Sahla M, Saidi H, Draiche K, Bousahla AA, Bourada F, Tounsi A (2019) Free vibration analysis of angle-ply laminated composite and soft core sandwich plates. Steel Comp Struct 33(5):663

    Google Scholar 

  41. Balubaid M, Tounsi A, Dakhel B, Mahmoud S (2019) Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory. Computers Concrete 24(6):579–586

    Google Scholar 

  42. Boutaleb S, Benrahou KH, Bakora A, Algarni A, Bousahla AA, Tounsi A, Tounsi A, Mahmoud S (2019) Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv Nano Res 7(3):191

    Google Scholar 

  43. Zarga D, Tounsi A, Bousahla AA, Bourada F, Mahmoud S (2019) Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Steel Comp Struct 32(3):389–410

    Google Scholar 

  44. Ebrahimi F, Sedighi SB (2020) Wave dispersion characteristics of a rectangular sandwich composite plate with tunable magneto-rheological fluid core rested on a visco-Pasternak foundation. Mech Based Design Struct Mach 28:1–4. https://doi.org/10.1080/15397734.2020.1716244

  45. Faroughi S, Rahmani A, Friswell M (2020) On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model. Appl Math Model 80:169–190

    MathSciNet  MATH  Google Scholar 

  46. Liu C, Yu J, Xu W, Zhang X, Zhang B (2020) Theoretical study of elastic wave propagation through a functionally graded micro-structured plate base on the modified couple-stress theory. Meccanica 1:1–5. https://doi.org/10.1007/s11012-020-01156-8

  47. Ebrahimi F, Barati MR, Haghi P (2017) Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams. J Therm Stress 40(5):535–547

    Google Scholar 

  48. Barati MR (2017) On wave propagation in nanoporous materials. Int J Eng Sci 116:1–11. https://doi.org/10.1016/j.ijengsci.2017.03.007

    Article  MathSciNet  MATH  Google Scholar 

  49. Moayedi H, Hayati S (2018) Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001125

    Article  Google Scholar 

  50. Moayedi H, Bui DT, Foong LK (2019) Slope stability monitoring using novel remote sensing based fuzzy logic. Sensors. https://doi.org/10.3390/s19214636

    Article  Google Scholar 

  51. Moayedi H, Bui DT, Kalantar B, Osouli A, Gör M, Pradhan B, Nguyen H, Rashid ASA (2019) Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility. Sensors. https://doi.org/10.3390/s19163590

    Article  Google Scholar 

  52. Moayedi H, Mu’azu MA, Kok Foong L, (2019) Swarm-based analysis through social behavior of grey wolf optimization and genetic programming to predict friction capacity of driven piles. Eng Computers. https://doi.org/10.1007/s00366-019-00885-z

  53. Moayedi H, Osouli A, Nguyen H, Rashid ASA (2019) A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability. Eng Computers. https://doi.org/10.1007/s00366-019-00828-8

    Article  Google Scholar 

  54. Yuan C, Moayedi H (2019) The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition. Eng Computers. https://doi.org/10.1007/s00366-019-00791-4

    Article  Google Scholar 

  55. Yuan C, Moayedi H (2019) Evaluation and comparison of the advanced metaheuristic and conventional machine learning methods for the prediction of landslide occurrence. Eng Computers. https://doi.org/10.1007/s00366-019-00798-x

    Article  Google Scholar 

  56. Li C, Han Q, Wang Z, Wu X (2020) Analysis of wave propagation in functionally graded piezoelectric composite plates reinforced with graphene platelets. Appl Mathem Model

  57. Ebrahimi F, Dabbagh A (2018) Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates. Eur Phys J Plus 133(3):97

    Google Scholar 

  58. Abad F, Rouzegar J (2019) Exact wave propagation analysis of moderately thick Levy-type plate with piezoelectric layers using spectral element method. Thin Walled Struct 141:319–331

    Google Scholar 

  59. Habibi M, Mohammadgholiha M, Safarpour H (2019) Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. J Brazilian Soc Mech Sci Eng 41(5):221. https://doi.org/10.1007/s40430-019-1715-x

    Article  Google Scholar 

  60. Zhao X, Li D, Yang B, Ma C, Zhu Y, Chen H (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comp 24:585–596

    Google Scholar 

  61. Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comp 88:105946

    Google Scholar 

  62. Zhao X, Zhang X, Cai Z, Tian X, Wang X, Huang Y, Chen H, Hu L (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490

    Google Scholar 

  63. Xu X, Chen H-L (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18(4):797–807

    Google Scholar 

  64. Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H, Yang B, Liu D (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowledge Based Syst 96:61–75

    Google Scholar 

  65. Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong C (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

    Google Scholar 

  66. Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inform Sci 492:181–203

    MathSciNet  Google Scholar 

  67. Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2020) An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine. Appl Soft Comp 86:105884

    Google Scholar 

  68. Bakhtiari M, Tarkashvand A, Daneshjou K (2020) Plane-strain wave propagation of an impulse-excited fluid-filled functionally graded cylinder containing an internally clamped shell. Thin-Walled Structures 5:106482. https://doi.org/10.1016/j.tws.2019.106482

  69. Ebrahimi F, Mohammadi K, Barouti MM, Habibi M (2019) Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves in Random and Complex Media:1–27

  70. Ebrahimi F, Seyfi A (2019) Wave propagation response of multi-scale hybrid nanocomposite shell by considering aggregation effect of CNTs. Mech Based Design Struct Mach 24:1–22. https://doi.org/10.1080/15397734.2019.1666722

  71. Karami B, Shahsavari D, Janghorban M, Dimitri R, Tornabene F (2019) Wave propagation of porous nanoshells. Nanomaterials 9(1):22

    Google Scholar 

  72. Farhangi V, Karakouzian M, Geertsema M (2020) Effect of Micropiles on Clean Sand Liquefaction Risk Based on CPT and SPT. Appl Sci 10(9):3111

    Google Scholar 

  73. Farhangi V, Karakouzian M (2019) Design of Bridge Foundations Using Reinforced Micropiles. In: Proceedings of the International Road Federation Global R2T Conference & Expo, Las Vegas, NV, USA, pp 19–22

  74. Farhangi V, Karakouzian M (2020) Effect of fiber reinforced polymer tubes filled with recycled materials and concrete on structural capacity of pile foundations. Appl Sci 10(5):1554

    Google Scholar 

  75. Tornabene F, Bacciocchi M, Fantuzzi N, Reddy J (2019) Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. Polym Compos 40(S1):E102–E126. https://doi.org/10.1002/pc.24520

    Article  Google Scholar 

  76. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020) Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Computers. https://doi.org/10.1007/s00366-020-01024-9

    Article  Google Scholar 

  77. Li J, Tang F, Habibi M (2020) Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure. Eng Computers. https://doi.org/10.1007/s00366-020-01110-y

    Article  Google Scholar 

  78. Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Computers. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  79. Ebrahimi F, Mahesh V (2019) Chaotic dynamics and forced harmonic vibration analysis of magneto-electro-viscoelastic multiscale composite nanobeam. Eng Computers 3:1–4. https://doi.org/10.1007/s00366-019-00865-3

  80. Al-Furjan M, Safarpour H, Habibi M, Safarpour M, Tounsi A (2020) A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Computers 5:1–25

  81. Gholipour A, Ghayesh MH, Hussain S (2020) A continuum viscoelastic model of Timoshenko NSGT nanobeams. Eng Computers 23:1–8. https://doi.org/10.1007/s00366-020-01088-7

  82. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin Walled Struct 149:106669

    Google Scholar 

  83. Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Design Struct Mach 4:1–28. https://doi.org/10.1080/15397734.2020.1719509

  84. Ghabussi A, Marnani JA, Rohanimanesh MS Improving seismic performance of portal frame structures with steel curved dampers. In: Structures, 2020. Elsevier, pp 27–40. https://doi.org/10.1016/j.istruc.2019.12.025

  85. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin Walled Struct 150:106683

    Google Scholar 

  86. Ghabussi A, Habibi M, NoormohammadiArani O, Shavalipour A, Moayedi H, Safarpour H (2020) Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate. J Vibr Control. https://doi.org/10.1177/1077546320923930

    Article  Google Scholar 

  87. Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H, Babaei B, Safarpour H (2019) Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Design Struct Mach 1–25

  88. Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, Safa M (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin Walled Struct 154:106840. https://doi.org/10.1016/j.tws.2020.106840

    Article  Google Scholar 

  89. Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, won Jung D, Safa M (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1748052

  90. Al-Furjan M, Habibi M, Chen G, Safarpour H, Safarpour M, Tounsi A (2020) Chaotic oscillation of a multi-scale hybrid nano-composites reinforced disk under harmonic excitation via GDQM. Composite Struct 30:112737. https://doi.org/10.1016/j.compstruct.2020.112737

  91. Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perf 25(2):382–389

    Google Scholar 

  92. Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Processes 31:310–323

    Google Scholar 

  93. Al-Furjan M, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets. Int J Appl Mech. https://doi.org/10.1142/S1758825120500660

    Article  Google Scholar 

  94. Liu Z, Su S, Xi D, Habibi M (2020) Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method. Mech Based Design Struct Mach 1–26

  95. Shi X, Li J, Habibi M (2020) On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow. Mech Based Design Struct Machines 1–37

  96. Habibi M, Safarpour M, Safarpour H (2020) Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods. Mech Based Design Struct Mach 1–22

  97. Zhang X, Shamsodin M, Wang H, NoormohammadiArani O, khan AM, Habibi M, Al-Furjan M (2020) Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory. J Biomol Struct Dynamics 1–26

  98. Habibi M, Taghdir A, Safarpour H (2019) Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Comp Part B 175:107125

    Google Scholar 

  99. Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H (2019) Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Computers Math Appl 77(10):2608–2626

    MathSciNet  MATH  Google Scholar 

  100. Cheshmeh E, Karbon M, Eyvazian A, Jung DW, Habibi M, Safarpour M (2020) Buckling and vibration analysis of FG-CNTRC plate subjected to thermo mechanical load based on higher order shear deformation theory. Mech Based Design Struc Mach 20:1–24. https://doi.org/10.1080/15397734.2020.1744005

    Google Scholar 

  101. Najaafi N, Jamali M, Habibi M, Sadeghi S, Jung DW, Nabipour N (2020) Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory. J Biomol Struct Dyn 10(1080/07391102):1751297

  102. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters. Symmetry 12(4):586

    Google Scholar 

  103. Oyarhossein MA, Aa A, Habibi M, Makkiabadi M, Daman M, Safarpour H, Jung DW (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10(1):5616. https://doi.org/10.1038/s41598-020-61855-w

    Article  Google Scholar 

  104. Shamsaddini Lori E, Ebrahimi F, Elianddy Bin Supeni E, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Computers. https://doi.org/10.1007/s00366-020-01004-z

    Article  Google Scholar 

  105. Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Computers 22:1–20. https://doi.org/10.1007/s00366-020-00949-5

  106. Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135(2):144

    Google Scholar 

  107. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2020) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol 26(2):461–73. https://doi.org/10.1007/s00542-019-04542-9

  108. Adamian A, Safari KH, Sheikholeslami M, Habibi M, Al-Furjan M, Chen G (2020) Critical temperature and frequency characteristics of gpls-reinforced composite doubly curved panel. Appl Sci 10(9):3251

    Google Scholar 

  109. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020) Application of exact continuum size‑dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Computers. https://doi.org/10.1007/s00366-020-01024-9

  110. Ghayesh MH (2019) Dynamical analysis of multilayered cantilevers. Commun Nonlinear Sci Numer Simul 71:244–253

    MathSciNet  MATH  Google Scholar 

  111. Farokhi H, Ghayesh MH, Gholipour A (2017) Dynamics of functionally graded micro-cantilevers. Int J Eng Sci 115:117–130

    MathSciNet  MATH  Google Scholar 

  112. Ghayesh MH (2018) Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci 124:115–131

    MathSciNet  MATH  Google Scholar 

  113. Ghayesh MH, Farokhi H (2020) Extremely large dynamics of axially excited cantilevers. Thin-Walled Structures:106275

  114. Ghayesh MH (2019) Mechanics of viscoelastic functionally graded microcantilevers. Eur J Mech A/Solids 73:492–499

    MathSciNet  MATH  Google Scholar 

  115. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC press

  116. Shariati A, Bayrami SS, Ebrahimi F, Toghroli A (2020) Wave propagation analysis of electro-rheological fluid-filled sandwich composite beam. Mech Based Design Struc Mach 28:1–10. https://doi.org/10.1080/15397734.2020.1745646

  117. Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Design Struc Mach 2:1–9. https://doi.org/10.1080/15397734.2019.1697932

  118. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials 13(7):1707

    Google Scholar 

  119. Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong L. Buckling and frequency responses of a graphen nanoplatelet reinforced composite microdisk. Int J Appl Mech

  120. Moayedi H, Aliakbarlou H, Jebeli M, Noormohammadiarani O, Habibi M, Safarpour H, Foong L (2020) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech 12(01):2050010

    Google Scholar 

  121. Shokrgozar A, Safarpour H, Habibi M (2020) Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proc Inst Mech Eng Part C 234(2):512–529

    Google Scholar 

  122. Habibi M, Mohammadi A, Safarpour H, Ghadiri M (2019) Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mechan Based Design Struc Mach 17:1–30. https://doi.org/10.1080/15397734.2019.1701490

  123. Nadri S, Xie L, Jafari M, Alijabbari N, Cyberey ME, Barker NS, Lichtenberger AW, Weikle RM (2018) A 160 GHz frequency Quadrupler based on heterogeneous integration of GaAs Schottky diodes onto silicon using SU-8 for epitaxy transfer. In: 2018 IEEE/MTT-S International Microwave Symposium-IMS, IEEE, pp 769–772

  124. Ebrahimi F, Dabbagh A (2019) Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model. Compos Part B Eng 173:106955

    Google Scholar 

  125. Wattanasakulpong N, Chaikittiratana A (2015) Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Appl Math Model 39(18):5459–5472. https://doi.org/10.1016/j.apm.2014.12.058

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (51675148). The Outstanding Young Teachers Fund of Hangzhou Dianzi University (GK160203201002/003). National Natural Science Foundation of China (51805475).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mostafa Habibi or Hamed Safarpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Furjan, M.S.H., Mohammadgholiha, M., Alarifi, I.M. et al. On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework. Engineering with Computers 38 (Suppl 1), 353–369 (2022). https://doi.org/10.1007/s00366-020-01152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01152-2

Keywords

Navigation