Skip to main content

Advertisement

Log in

Detection of NTRK1/3 Rearrangements in Papillary Thyroid Carcinoma Using Immunohistochemistry, Fluorescent In Situ Hybridization, and Next-Generation Sequencing

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

NTRK1/3 rearrangements have been reported in 2.3–3.4% of papillary thyroid carcinoma (PTC) and are regarded as potential therapeutic targets. Recently, the application of immunohistochemistry (IHC) to detect NTRK rearrangements has been widely discussed. The current study aimed to characterize the clinicopathological features of PTC with NTRK1/3 fusions, to examine the utility of pan-TRK IHC, and to compare IHC with fluorescent in situ hybridization (FISH) and next-generation sequencing (NGS). In a cohort of 525 consecutive PTC cases, 60 BRAFV600E-negative cases underwent complete analyses of FISH, and 12 (2.3%) cases with NTRK1/3 break-apart were found. A novel ERC1-NTRK3 fusion was identified by NGS in one case. Pathological features of non-infiltrative tumor border, clear cell change, and reduced nuclear elongation and irregularity were significantly more common in NTRK1/3-rearranged PTC when compared with 48 BRAFV600E-negative non-NTRK1/3 PTC cases. In whole tissue sections, pan-TRK IHC was positive in 3/7 (42.9%) cases with an ETV6-NTRK3 rearrangement including 2 cases with low percentage of stained tumor cells, 2/3 (66.7%) with non-ETV6 NTRK3 rearrangements, and 2/2 (100%) with NTRK1 rearrangements. All FISH-negative cases were negative for pan-TRK in tissue microarray sections. As a result, pan-TRK IHC showed a sensitivity of 58.3% and specificity of 100% for NTRK1/3 rearrangements in BRAFV600E-negative PTC. In conclusion, NTRK1/3-rearranged PTC shared some unique morphologic features. Pan-TRK IHC showed high specificity and moderate sensitivity for NTRK1/3-rearranged PTC and should be interpreted with caution due to staining heterogeneity. Based on the above findings, we propose an algorithm integrating morphology, IHC, and molecular testing to detect NTRK1/3 rearrangements in PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM (2017) Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 317:1338-1348. https://doi.org/10.1001/jama.2017.2719

    Article  Google Scholar 

  2. Amatu A, Sartore-Bianchi A, Siena S (2016) NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 1:e000023. https://doi.org/10.1136/esmoopen-2015-000023

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cancer Genome Atlas Research Network (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676-690. https://doi.org/10.1016/j.cell.2014.09.050

    Article  CAS  Google Scholar 

  4. Liang J, Cai W, Feng D, Teng H, Mao F, Jiang Y, Hu S, Li X, Zhang Y, Liu B, Sun ZS (2018) Genetic landscape of papillary thyroid carcinoma in the Chinese population. J Pathol 244:215-226. https://doi.org/10.1002/path.5005

    Article  CAS  PubMed  Google Scholar 

  5. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Nagasubramanian R, Taylor M, Rudzinski ER, Meric-Bernstam F, Sohal DPS, Ma PC, Raez LE, Hechtman JF, Benayed R, Ladanyi M, Tuch BB, Ebata K, Cruickshank S, Ku NC, Cox MC, Hawkins DS, Hong DS, Hyman DM (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731-739. https://doi.org/10.1056/NEJMoa1714448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, Blakely CM, Seto T, Cho BC, Tosi D, Besse B, Chawla SP, Bazhenova L, Krauss JC, Chae YK, Barve M, Garrido-Laguna I, Liu SV, Conkling P, John T, Fakih M, Sigal D, Loong HH, Buchschacher GL, Jr., Garrido P, Nieva J, Steuer C, Overbeck TR, Bowles DW, Fox E, Riehl T, Chow-Maneval E, Simmons B, Cui N, Johnson A, Eng S, Wilson TR, Demetri GD, trail investigators (2020) Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 21:271-282. https://doi.org/10.1016/S1470-2045(19)30691-6

  7. Hung YP, Jo VY, Hornick JL (2019) Immunohistochemistry with a pan-TRK antibody distinguishes secretory carcinoma of the salivary gland from acinic cell carcinoma. Histopathology 75:54-62. https://doi.org/10.1111/his.13845

    Article  PubMed  Google Scholar 

  8. Bell D, Ferrarotto R, Liang L, Goepfert RP, Li J, Ning J, Broaddus R, Weber RS, El-Naggar AK (2020) Pan-Trk immunohistochemistry reliably identifies ETV6-NTRK3 fusion in secretory carcinoma of the salivary gland. Virchows Arch 476:295-305. https://doi.org/10.1007/s00428-019-02640-7

    Article  CAS  PubMed  Google Scholar 

  9. Guibourg B, Cloarec E, Conan-Charlet V, Quintin-Roue I, Grippari JL, Le Flahec G, Marcorelles P, Uguen A (2020) EPR17341 and A7H6R pan-TRK immunohistochemistry result in highly different staining patterns in a series of salivary gland tumors. Appl Immunohistochem Mol Morphol https://doi.org/10.1097/PAI.0000000000000825

  10. Xu B, Haroon Al Rasheed MR, Antonescu CR, Alex D, Frosina D, Ghossein R, Jungbluth AA, Katabi N (2020) Pan-Trk immunohistochemistry is a sensitive and specific ancillary tool for diagnosing secretory carcinoma of the salivary gland and detecting ETV6-NTRK3 fusion. Histopathology 76:375-382. https://doi.org/10.1111/his.13981

    Article  PubMed  Google Scholar 

  11. Chiang S, Cotzia P, Hyman DM, Drilon A, Tap WD, Zhang L, Hechtman JF, Frosina D, Jungbluth AA, Murali R, Park KJ, Soslow RA, Oliva E, Iafrate AJ, Benayed R, Ladanyi M, Antonescu CR (2018) NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. Am J Surg Pathol 42:791-798. https://doi.org/10.1097/PAS.0000000000001055

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hung YP, Fletcher CDM, Hornick JL (2018) Evaluation of pan-TRK immunohistochemistry in infantile fibrosarcoma, lipofibromatosis-like neural tumour and histological mimics. Histopathology 73:634-644. https://doi.org/10.1111/his.13666

    Article  PubMed  Google Scholar 

  13. Rudzinski ER, Lockwood CM, Stohr BA, Vargas SO, Sheridan R, Black JO, Rajaram V, Laetsch TW, Davis JL (2018) Pan-Trk immunohistochemistry identifies NTRK rearrangements in pediatric mesenchymal tumors. Am J Surg Pathol 42:927-935. https://doi.org/10.1097/PAS.0000000000001062

    Article  PubMed  Google Scholar 

  14. Davis JL, Lockwood CM, Stohr B, Boecking C, Al-Ibraheemi A, DuBois SG, Vargas SO, Black JO, Cox MC, Luquette M, Turpin B, Szabo S, Laetsch TW, Albert CM, Parham DM, Hawkins DS, Rudzinski ER (2019) Expanding the spectrum of pediatric NTRK-rearranged mesenchymal tumors. Am J Surg Pathol 43:435-445. https://doi.org/10.1097/PAS.0000000000001203

    Article  PubMed  Google Scholar 

  15. Suurmeijer AJ, Dickson BC, Swanson D, Zhang L, Sung YS, Huang HY, Fletcher CD, Antonescu CR (2019) The histologic spectrum of soft tissue spindle cell tumors with NTRK3 gene rearrangements. Genes Chromosom Cancer 58:739-746. https://doi.org/10.1002/gcc.22767

    Article  CAS  PubMed  Google Scholar 

  16. Rabban JT, Devine P, Sangoi AR, Poder L, Alvarez E, Davis JL, Rudzinski E, Garg K, Bean GR (2020) NTRK fusion cervical sarcoma: a report of 3 cases, emphasizing morphological and immunohistochemical distinction from other uterine sarcomas, including adenosarcoma. Histopathology. https://doi.org/10.1111/his.14069

  17. Wong DD, Vargas AC, Bonar F, Maclean F, Kattampallil J, Stewart C, Sulaiman B, Santos L, Gill AJ (2020) NTRK-rearranged mesenchymal tumours: diagnostic challenges, morphological patterns and proposed testing algorithm. Pathology 52:401-409. https://doi.org/10.1016/j.pathol.2020.02.004

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto H, Nozaki Y, Kohashi K, Kinoshita I, Oda Y (2020) Diagnostic utility of pan-Trk immunohistochemistry for inflammatory myofibroblastic tumours. Histopathology 76:774-778. https://doi.org/10.1111/his.14010

    Article  PubMed  Google Scholar 

  19. Gatalica Z, Xiu J, Swensen J, Vranic S (2019) Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 32:147-153. https://doi.org/10.1038/s41379-018-0118-3

    Article  CAS  PubMed  Google Scholar 

  20. Solomon JP, Linkov I, Rosado A, Mullaney K, Rosen EY, Frosina D, Jungbluth AA, Zehir A, Benayed R, Drilon A, Hyman DM, Ladanyi M, Sireci AN, Hechtman JF (2020) NTRK fusion detection across multiple assays and 33,997 cases: diagnostic implications and pitfalls. Mod Pathol 33:38-46. https://doi.org/10.1038/s41379-019-0324-7

    Article  CAS  PubMed  Google Scholar 

  21. Leeman-Neill RJ, Kelly LM, Liu P, Brenner AV, Little MP, Bogdanova TI, Evdokimova VN, Hatch M, Zurnadzy LY, Nikiforova MN, Yue NJ, Zhang M, Mabuchi K, Tronko MD, Nikiforov YE (2014) ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 120:799-807. https://doi.org/10.1002/cncr.28484

    Article  CAS  PubMed  Google Scholar 

  22. Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, Witchel SF, Gurtunca N, Joyce J, Zhong S, Nikiforova MN, Nikiforov YE (2016) Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol 19:115-122. https://doi.org/10.2350/15-07-1667-OA.1

    Article  PubMed  Google Scholar 

  23. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, Tallini G, Nikiforova MN, Christison-Lagay ER, Udelsman R, Dinauer CA, Nikiforov YE (2016) NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 122:1097-1107. https://doi.org/10.1002/cncr.29887

    Article  CAS  PubMed  Google Scholar 

  24. Seethala RR, Chiosea SI, Liu CZ, Nikiforova M, Nikiforov YE (2017) Clinical and morphologic features of ETV6-NTRK3 translocated papillary thyroid carcinoma in an adult population without radiation exposure. Am J Surg Pathol 41:446-457. https://doi.org/10.1097/PAS.0000000000000814

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bastos AU, de Jesus AC, Cerutti JM (2018) ETV6-NTRK3 and STRN-ALK kinase fusions are recurrent events in papillary thyroid cancer of adult population. Eur J Endocrinol 178:83-91. https://doi.org/10.1530/EJE-17-0499

    Article  CAS  PubMed  Google Scholar 

  26. Chu YH, Dias-Santagata D, Farahani AA, Boyraz B, Faquin WC, Nose V, Sadow PM (2020) Clinicopathologic and molecular characterization of NTRK-rearranged thyroid carcinoma (NRTC). Mod Pathol https://doi.org/10.1038/s41379-020-0574-4

  27. Pekova B, Sykorova V, Dvorakova S, Vaclavikova E, Moravcova J, Katra R, Astl J, Vlcek P, Kodetova D, Vcelak J, Bendlova B (2020) RET, NTRK, ALK, BRAF and MET fusions in a large cohort of pediatric papillary thyroid carcinomas, Thyroid. https://doi.org/10.1089/thy.2019.0802

  28. Hang JF, Li AF, Chang SC, Liang WY (2016) Immunohistochemical detection of the BRAF V600E mutant protein in colorectal cancers in Taiwan is highly concordant with the molecular test. Histopathology 69:54-62. https://doi.org/10.1111/his.12903

    Article  PubMed  Google Scholar 

  29. Cameselle-Teijeiro JM, Peteiro-Gonzalez D, Caneiro-Gomez J, Sanchez-Ares M, Abdulkader I, Eloy C, Melo M, Amendoeira I, Soares P, Sobrinho-Simoes M (2018) Cribriform-morular variant of thyroid carcinoma: a neoplasm with distinctive phenotype associated with the activation of the WNT/beta-catenin pathway. Mod Pathol 31:1168-1179. https://doi.org/10.1038/s41379-018-0070-2

    Article  CAS  PubMed  Google Scholar 

  30. Seethala RR, Baloch ZW, Barletta JA, Khanafshar E, Mete O, Sadow PM, LiVolsi VA, Nikiforov YE, Tallini G, Thompson LD (2018) Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Mod Pathol 31:39-55. https://doi.org/10.1038/modpathol.2017.130

    Article  CAS  PubMed  Google Scholar 

  31. Pozdeyev N, Gay LM, Sokol ES, Hartmaier R, Deaver KE, Davis S, French JD, Borre PV, LaBarbera DV, Tan AC, Schweppe RE, Fishbein L, Ross JS, Haugen BR, Bowles DW (2018) Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res 24:3059-3068. https://doi.org/10.1158/1078-0432.CCR-18-0373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nikiforov YE (2002) RET/PTC rearrangement in thyroid tumors. Endocr Pathol 13:3-16. https://doi.org/10.1385/ep:13:1:03

    Article  CAS  PubMed  Google Scholar 

  33. Chou A, Fraser S, Toon CW, Clarkson A, Sioson L, Farzin M, Cussigh C, Aniss A, O'Neill C, Watson N, Clifton-Bligh RJ, Learoyd DL, Robinson BG, Selinger CI, Delbridge LW, Sidhu SB, O'Toole SA, Sywak M, Gill AJ (2015) A detailed clinicopathologic study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol 39:652-659. https://doi.org/10.1097/PAS.0000000000000368

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harrison BT, Fowler E, Krings G, Chen YY, Bean GR, Vincent-Salomon A, Fuhrmann L, Barnick SE, Chen B, Hosfield EM, Hornick JL, Schnitt SJ (2019) Pan-TRK immunohistochemistry: a useful diagnostic adjunct for secretory carcinoma of the breast. Am J Surg Pathol 43:1693-1700. https://doi.org/10.1097/PAS.0000000000001366

    Article  PubMed  Google Scholar 

  35. Remoue A, Conan-Charlet V, Bourhis A, Flahec GL, Lambros L, Marcorelles P, Uguen A (2019) Non-secretory breast carcinomas lack NTRK rearrangements and TRK protein expression. Pathol Int 69:94-96. https://doi.org/10.1111/pin.12766

    Article  CAS  PubMed  Google Scholar 

  36. Hechtman JF, Benayed R, Hyman DM, Drilon A, Zehir A, Frosina D, Arcila ME, Dogan S, Klimstra DS, Ladanyi M, Jungbluth AA (2017) Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol 41:1547-1551. https://doi.org/10.1097/PAS.0000000000000911

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lasota J, Chlopek M, Lamoureux J, Christiansen J, Kowalik A, Wasag B, Felisiak-Golabek A, Agaimy A, Biernat W, Canzonieri V, Centonze G, Chmielik E, Daum O, Dubova M, Dziuba I, Goertz S, Gozdz S, Guttmejer-Nasierowska A, Haglund C, Halon A, Hartmann A, Inaguma S, Izycka-Swieszewska E, Kaczorowski M, Kita P, Kolos M, Kopczynski J, Michal M, Milione M, Okon K, Peksa R, Pyzlak M, Ristimaki A, Rys J, Szostak B, Szpor J, Szumilo J, Teresinski L, Waloszczyk P, Wejman J, Wesolowski W, Miettinen M (2020) Colonic adenocarcinomas harboring NTRK fusion genes: a clinicopathologic and molecular genetic study of 16 cases and review of the literature. Am J Surg Pathol 44:162-173. https://doi.org/10.1097/PAS.0000000000001377

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Shu-Ying Wang and Ms. Yun-Hsin Liang for technical assistance and the Biobank, Taipei Veterans General Hospital for the assistance with sample preparation in this study.

Funding

The study was supported by the research grants from Taipei Veterans General Hospital (Grant No.: V109B-029), Taipei Veterans General Hospital-National Yang-Ming University Excellent Physician Scientists Cultivation Program (Grant No.: 109-V-B-002 and 109-V-B-003), and Taipei Institute of Pathology (Grant No.: TIP-108-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Fan Hang.

Ethics declarations

This study was approved by the IRB of Taipei Veterans General Hospital, which granted exemption of informed consent for tissue procurement through the Biobank of Taipei Veterans General Hospital after an unlinked anonymous process (IRB no.: 2019-07-001BC, Biobank no.: 10818).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YC., Chen, JY., Huang, CJ. et al. Detection of NTRK1/3 Rearrangements in Papillary Thyroid Carcinoma Using Immunohistochemistry, Fluorescent In Situ Hybridization, and Next-Generation Sequencing. Endocr Pathol 31, 348–358 (2020). https://doi.org/10.1007/s12022-020-09648-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09648-9

Keywords

Navigation