Skip to main content
Log in

Efficient surface plasmon propagation on flexible free-standing and PMMA sandwiched graphene at optimized near to far-IR frequencies

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Graphene is an important material for the design of flexible and stretchable electronic and optoelectronic devices on account of its high Young’s modulus and generation of highly confined surface plasmons. In this work, we report the near to far-infrared (FIR) input frequencies required to generate the maximum electric field and magnetic field for the efficient propagation of surface plasmons for differently doped, micron-long, free-standing and poly(methyl methacrylate) (PMMA) sandwiched graphene sheets. The effect of the variation of doping of graphene, graphene sheet length and bent angle of the graphene sheet on the propagating electromagnetic field is analysed at the obtained input excitation frequencies using finite element method. Low attenuation of 0.034 and 0.234 dB along with relatively high confinement of ~6 and ~13 nm for the surface plasmons are achieved for micron-long, bent, highly doped, freely suspended and PMMA sandwiched graphene sheets at 193.5 and 190 THz, respectively. The knowledge of these optimized NIR–FIR input excitation frequencies producing maximum electric and magnetic field output at the end of graphene sheet is useful for designing compact and efficient graphene-based flexible and wearable devices for medical imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385

    Article  CAS  Google Scholar 

  2. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J et al 2008 Solid State Commun. 146 351

    Article  CAS  Google Scholar 

  3. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al 2008 Nano Lett. 8 902

    Article  CAS  Google Scholar 

  4. Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A et al 2008 Appl. Phys. Lett. 92 151911

    Article  Google Scholar 

  5. Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T et al 2008 Science 320 1308

    Article  CAS  Google Scholar 

  6. Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X et al 2013 Nat. Photon. 7 394

    Article  CAS  Google Scholar 

  7. Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M et al 2012 Nat. Nanotechnol. 7 330

    Article  CAS  Google Scholar 

  8. Xia S-X, Zhai X, Wang L-L, Lin Q and Wen S-C 2016 Opt. Express 24 16336

    Article  CAS  Google Scholar 

  9. Thongrattanasiri S, Manjavacas A and Garcia de Abajo F J 2012 ACS Nano 6 1766

  10. Thongrattanasiri S, Koppens F H L and de Abajo F J G 2012 Phys. Rev. Lett. 108 047401

    Article  Google Scholar 

  11. Guo B, Fang L, Zhang B and Gong J R 2011 Insciences J. 1 80

    Article  CAS  Google Scholar 

  12. Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M et al 2012 Nature 487 82

    Article  CAS  Google Scholar 

  13. Tassin P, Koschny T, Kafesaki M and Soukoulis C M 2012 Nat. Photon. 6 259

    Article  CAS  Google Scholar 

  14. Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435

    Article  Google Scholar 

  15. Li H, Anugrah Y, Koester S J and Li M 2012 Appl. Phys. Lett. 101 111110

    Article  Google Scholar 

  16. Cheng Z, Tsang H K, Wang X, Chen X, Xu K and Xu J B 2013 Proc. IEEE Photonics Conference p 460

  17. Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S et al 2009 Nature 457 706

    Article  CAS  Google Scholar 

  18. Hofmann A I, Cloutet E and Hadziioannou G 2018 Adv. Electron. Mater. 4 1700412

    Article  Google Scholar 

  19. Zhao Y, Duan J, He B and Tang Q 2019 J. Alloys Compd. 776 31

    Article  CAS  Google Scholar 

  20. Dudem B, Kim D H, Bharat L K and Yu J S 2018 Appl. Energy 230 865

    Article  CAS  Google Scholar 

  21. Koo J H, Kim D C, Shim H J, Kim T H and Kim D H 2018 Adv. Funct. Mater. 28 1801834

    Article  Google Scholar 

  22. Zhang M and Yeow J T 2018 ACS Appl. Mater. Interfaces 10 26604

    Article  CAS  Google Scholar 

  23. Li D, Hu Y, Zhang N, Lv Y, Lin J, Guo X et al 2017 ACS Appl. Mater. Interfaces 9 36103

    Article  CAS  Google Scholar 

  24. Lu W B, Zhu W, Xu H J, Ni Z H, Dong Z G and Cui T J 2013 Opt. Express 21 10475

    Article  CAS  Google Scholar 

  25. Jang H, Park Y J, Chen X, Das T, Kim M S and Ahn J H 2016 Adv. Mater. 28 4184

    Article  CAS  Google Scholar 

  26. Koppens F H L, Chang D E and García De A F J 2011 Nano Lett. 11 3370

    Article  CAS  Google Scholar 

  27. Nikitin A Y, Guinea F, García-Vidal F J and Martín-Moreno L 2011 Phys. Rev. B 84 161407

    Article  Google Scholar 

  28. Nikitin A Y, Guinea F, Garcia-Vidal F J and Martin-Moreno L 2012 Phys. Rev. B 85 081405

    Article  Google Scholar 

  29. Gao W, Shu J, Qiu C and Xu Q 2012 ACS Nano 6 7806

    Article  CAS  Google Scholar 

  30. Hajian H, Serebryannikov A E, Ghobadi A, Demirag Y, Butun B, Vandenbosch G A et al 2018 Sci. Rep. 8 1

    CAS  Google Scholar 

  31. Xiao T-H, Gan L and Li Z-Y 2015 Photonics Res. 3 300

    Article  CAS  Google Scholar 

  32. Mikhailov S A and Ziegler K 2007 Phys. Rev. Lett. 99 016803

    Article  CAS  Google Scholar 

  33. Hanson G W 2008 J. Appl. Phys. 103 064302

    Article  Google Scholar 

  34. Luo X, Qiu T, Lu W and Ni Z 2013 Mater. Sci. Eng. R Rep. 74 351

    Article  Google Scholar 

  35. Jacob G and Raina G 2017 Proc. International Conference on Nextgen Electronic Technologies: Silicon to Software p 225

  36. Vakil A and Engheta N 2011 Science 332 1291

    Article  CAS  Google Scholar 

  37. Canadija M, Brcic M and Brnic J 2013 Eng. Rev. 33 9

    Google Scholar 

Download references

Acknowledgements

GJ acknowledges the financial support received from Vellore Institute of Technology, Vellore, for performing this study. GJ is grateful to Prof A Nirmala Grace, Director, Centre for Nanotechnology Research, for constant encouragement. GR is thankful for the support from Vellore Institute of Technology, Chennai Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Raina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, G., Raina, G. Efficient surface plasmon propagation on flexible free-standing and PMMA sandwiched graphene at optimized near to far-IR frequencies. Bull Mater Sci 43, 256 (2020). https://doi.org/10.1007/s12034-020-02226-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02226-z

Keywords

Navigation