Skip to main content
Log in

A Novel Galactoglucomannan Exopolysaccharide Produced by Oil Fermentation with Pseudozyma sp. SY16

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently, the production of exopolysaccharide from Pseudozyma sp. SY16, which is mannosylerythritol lipid-producing yeast, has been occasionally observed during industrial fermentations. Moreover, exopolysaccharides derived from microbes are in high demand for the production of biopolymers. Therefore, this study aimed to investigate the production and characteristics of the exopolysaccharide produced by this strain. In batch fermentations with this strain, the maximum production yield of exopolysaccharide (5.8 g/L) was obtained under olive oil supplementation as a carbon source with culture conditions of 30°C, pH 8.0, and 600 rpm. Through a series of liquid chromatography steps, the exopolysaccharide was successfully purified, and its emulsifying activity was demonstrated. In addition, two-dimensional nuclear magnetic resonance analysis revealed that the exopolysaccharide is a galactoglucomannan with a novel and unique structure, consisting of galactose, glucose, and mannose in the ratio of 1:5:3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, H. S., B. D. Yoon, D. H. Choung, H. M. Oh, T. Katsuragi, and Y. Tani (1999) Characterization of a biosurfactant, mannosylerythritol lipid produced from Candida sp. SY16. Appl. Microbiol. Biotechnol. 52: 713–721.

    Article  CAS  Google Scholar 

  2. Iyer, A., K. Mody, and B. Jha (2006) Emulsifying properties of a marine bacterial exopolysaccharide. Enzyme Microb. Technol. 38: 220–222.

    Article  CAS  Google Scholar 

  3. More, T. T., J. S. S. Yadav, S. Yan, R. D. Tyagi, and R. Y. Surampalli (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manage. 144: 1–25.

    Article  CAS  Google Scholar 

  4. Neu, T. R., T. Dengler, B. Jann, and K. Poralla (1992) Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain. J. Gen. Microbiol. 138: 2531–2537.

    Article  CAS  Google Scholar 

  5. Vijayendra, S. V. N. and T. R. Shamala (2014) Film forming microbial biopolymers for commercial applications-a review. Crit. Rev. Biotechnol. 34: 338–357.

    Article  CAS  Google Scholar 

  6. Duboc, P. and B. Mollet (2001) Applications of exopolysaccharides in the dairy industry. Int Dairy J. 11: 759–768.

    Article  CAS  Google Scholar 

  7. Lawford, H. G. and J. D. Rousseau (1991) Bioreactor design considerations in the production of high-quality microbial exopolysaccharide. Appl. Biochem. Biotechnol. 28: 667–684.

    Article  Google Scholar 

  8. Seviour, R. J., B. McNeil, M. L. Fazenda, and L. M. Harvey (2011) Operating bioreactors for microbial exopolysaccharide production. Crit. Rev. Biotechnol. 31: 170–185.

    Article  CAS  Google Scholar 

  9. Scheller, H. V. and P. Ulvskov (2010) Hemicelluloses. Annu. Rev. Plant. Biol. 61: 263–289.

    Article  CAS  Google Scholar 

  10. Willför, S., K. Sundberg, M. Tenkanen, and B. Holmbom (2008) Spruce-derived mannans — A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr. Polym. 72: 197–210.

    Article  Google Scholar 

  11. Price, N. P. J., T. M. Hartman, T. A. Faber, K. E. Vermillion, and G. C. Fahey (2011) Galactoglucomannan oligosaccharides (GGMO) from a molasses byproduct of pine (Pinus taeda) fiberboard production. J. Agric. Food Chem. 59: 1854–1861.

    Article  CAS  Google Scholar 

  12. Kielak, A. M., T. C. L. Castellane, J. C. Campanharo, L. A. Colnago, O. Y. A. Costa, M. L. Corradi da Silva, J. A. van Veen, E. G. M. Lemos, and E. E. Kuramae (2017) Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci. Rep. 7: 41193.

    Article  CAS  Google Scholar 

  13. Kuncheva, M., K. Pavlova, I. Panchev, and S. Dobreva (2007) Emulsifying power of mannan and glucomannan produced by yeasts. Int. J. Cosmet. Sci. 29: 377–384.

    Article  CAS  Google Scholar 

  14. Kim, H. S., C. H. O. Lee, H. H. Suh, K. H. Ahn, H. M. Oh, G. Kwon, J. I. W. Yang, and B. D. Yoon (1997) A lipopeptide biosurfactant produced by Bacillus subtilis C9 selected through the oil film-collapsing assay. J. Microbiol. Biotechnol. 7: 180–188.

    CAS  Google Scholar 

  15. Sugita, T., M. Takashima, N. Poonwan, N. Mekha, K. Malaithao, B. Thungmuthasawat, S. Prasarn, P. Luangsook, and T. Kudo (2003) The first isolation of ustilaginomycetous anamorphic yeasts, Pseudozyma species, from patients’ blood and a description of two new species: P. parantarctica and P. thailandica. Microbiol. Immunol. 47: 183–190.

    Article  CAS  Google Scholar 

  16. Kim, H. S., J. W. Jeon, B. H. Kim, C. Y. Ahn, H. M. Oh, and B. D. Yoon (2006) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp. SY16 using fed-batch fermentation. Appl. Microbiol. Biotechnol. 70: 391–396.

    Article  CAS  Google Scholar 

  17. Kim, H. S., J. W. Jeon, H. W. Lee, Y. I. Park, W. T. Seo, H. M. Oh, T. Katsuragi, Y. Tani, and B. D. Yoon (2002) Extracellular production of a glycolipid biosurfactant, mannosylerythritol lipid, from Candida antarctica. Biotechnol. Lett. 24: 225–229.

    Article  CAS  Google Scholar 

  18. Kim, B. H., R. Ramanan, D. H. Cho, H. M. Oh, and H. S. Kim (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy. 69: 95–105.

    Article  CAS  Google Scholar 

  19. Badr-Eldin, S. M., O. M. El-Tayeb, H. G. El-Masry, F. H. A. Mohamad, and O. A. A. El-Rahman (1994) Polysaccharide production by Aureobasidium pullulans: factors affecting polysaccharide formation. World J. Microbiol. Biotechnol. 10: 423–426.

    Article  CAS  Google Scholar 

  20. Cho, D. H., R. Ramanan, J. Heo, J. Lee, B. H. Kim, H. M. Oh, and H. S. Kim (2015) Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour. Technol. 175: 578–585.

    Article  CAS  Google Scholar 

  21. Ghadge, S. V. and H. Raheman (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy. 28: 601–605.

    Article  CAS  Google Scholar 

  22. Ahn, S. G., H. H. Suh, C. H. Lee, S. H. Moon, H. S. Kim, K. H. Ahn, G. S. Kwon, H. M. Oh, and B. D. Yoon (1998) Isolation and characterization of a novel polysaccharide producing Bacillus polymyxa A49 KCTC 4648P. J. Microbiol. Biotechnol. 8: 171–177.

    CAS  Google Scholar 

  23. Cataldi, T. R. I., C. Campa, and G. E. De Benedetto (2000) Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing. Fresenius J. Anal. Chem. 368: 739–758.

    Article  CAS  Google Scholar 

  24. Hall, K. B. (1994) Interaction of RNA hairpins with the human U1A N-terminal RNA binding domain. Biochemistry. 33: 10076–10088.

    Article  CAS  Google Scholar 

  25. Gerson, D. F., M. M. Kole, B. Ozum, and M. N. Oguztoreli (1988) Substrate concentration control in bioreactors. Biotechnol. Genet. Eng. Rev. 6: 67–150.

    Article  CAS  Google Scholar 

  26. Willför, S., R. Sjöholm, C. Laine, M. Roslund, J. Hemming, and B. Holmbom (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr. Polym. 52: 175–187.

    Article  Google Scholar 

  27. Mikkonen, K. S., M. Tenkanen, P. Cooke, C. Xu, H. Rita, S. Willför, B. Holmbom, K. B. Hicks, and M. P. Yadav (2009) Mannans as stabilizers of oil-in-water beverage emulsions. Lebenson Wiss Technol. 42: 849–855.

    Article  CAS  Google Scholar 

  28. Lundqvist, J., A. Jacobs, M. Palm, G. Zacchi, O. Dahlman, and H. Stålbrand (2003) Characterization of galactoglucomannan extracted from spruce (Picea abies) by heat-fractionation at different conditions. Carbohydr. Polym. 51: 203–211.

    Article  CAS  Google Scholar 

  29. Lundqvist, J., A. Teleman, L. Junel, G. Zacchi, O. Dahlman, F. Tjerneld, and H. Stålbrand (2002) Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr. Polym. 48: 29–39.

    Article  CAS  Google Scholar 

  30. Polari, L., P. Ojansivu, S. Makela, C. Eckerman, B. Holmbom, and S. Salminen (2012) Galactoglucomannan extracted from spruce (Picea abies) as a carbohydrate source for probiotic bacteria. J. Agric. Food Chem. 60: 11037–11043.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the KRIBB (Korea Research Institute of Bioscience and Biotechnology) Research Initiative Program (Grant No. KGS1292012; KGM5252012)(http://www.kribb.re.kr).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Sik Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.N., Lee, Y.J., Cho, DH. et al. A Novel Galactoglucomannan Exopolysaccharide Produced by Oil Fermentation with Pseudozyma sp. SY16. Biotechnol Bioproc E 25, 742–748 (2020). https://doi.org/10.1007/s12257-020-0066-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0066-x

Keywords

Navigation