Skip to main content
Log in

Optimally Fabricated Chitosan Particles Containing Ovalbumin Induced Cellular and Humoral Immunity in Immunized Mice

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Subunit vaccines have been developed as promising vaccines with safety. However, subunit vaccines have difficulties in commercialization due to low efficiencies of delivery and immune response. As a result, studies of adjuvants that improve the immune-inducing ability of vaccines have been conducted globally. Aluminum salts (alum) have been extensively used as vaccine adjuvants, but they cannot induce potent cellular immunity. In this study, chitosan particles were fabricated by the precipitation-coacervation method on four different conditions. Ovalbumin (OVA), as a model antigen, was encapsulated in chitosan particles. The optimized fabrication conditions of chitosan particles were 8 mL/min drop rate of sodium sulfate and 0.5 mg/mL chitosan concentration in a sonication bath. Properties of the optimized chitosan particle were about 300 nm diameter, 0.1 polydispersity index, 16.2 mV zeta potential, and 90% loading efficiency. Chitosan particle-containing OVA showed 76% uptake efficiency by mouse macrophage cells and suitable cell viability. Immunization of mice by chitosan particles exhibited IgG1 titer and Interleukin-4 production of a similar level with the alum. Moreover, chitosan particles showed significantly enhanced IgG2 titer and Interferon-gamma production related to Th1-mediated cellular immune response. These results indicated that chitosan particles could be expected to be a promising adjuvant inducing cellular and humoral immunity for subunit vaccine delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minor, P. D. (2015) Live attenuated vaccines: Historical successes and current challenges. Virology. 479–480: 379–392.

    Article  Google Scholar 

  2. Andersen, P. and T. M. Doherty (2005) The success and failure of BCG — implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3: 656–662.

    Article  CAS  Google Scholar 

  3. Patronov, A. and I. Doytchinova (2013) T-cell epitope vaccine design by immunoinformatics. Open Biol. 3: 120139.

    Article  Google Scholar 

  4. Vartak, A. and S. J. Sucheck (2016) Recent advances in subunit vaccine carriers. Vaccines (Basel). 4: 12.

    Article  Google Scholar 

  5. Carter, D. and S. G. Reed (2010) Role of adjuvants in modeling the immune response. Curr. Opin. HIV AIDS. 5: 409–413.

    Article  Google Scholar 

  6. Gupta, R. K. (1998) Aluminum compounds as vaccine adjuvants. Adv. Drug Deliv. Rev. 32: 155–172.

    Article  CAS  Google Scholar 

  7. Amanna, I. J. and M. K. Slifka (2011) Contributions of humoral and cellular immunity to vaccine-induced protection in humans. Virology. 411: 206–215.

    Article  CAS  Google Scholar 

  8. Roy, K., H. Q. Mao, S. K. Huang, and K. W. Leong (1999) Oral gene delivery with chitosan—DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med. 5: 387–391.

    Article  CAS  Google Scholar 

  9. Carroll, E. C., L. Jin, A. Mori, N. Munoz-Wolf, E. Oleszycka, H. B. T. Moran, S. Mansouri, C. P. McEntee, E. Lambe, E. M. Agger, P. Andersen, C. Cunningham, P. Hertzog, K. A. Fitzgerald, A. G. Bowie, and E. C. Lavelle (2016) The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity. 44: 597–608.

    Article  CAS  Google Scholar 

  10. Demento, S. L., W. Cui, J. M. Criscione, E. Stern, J. Tulipan, S. M. Kaech, and T. M. Fahmy (2012) Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 33: 4957–4964.

    Article  CAS  Google Scholar 

  11. Thiele, L., H. P. Merkle, and E. Walter (2002) Phagocytosis of synthetic particulate vaccine delivery systems to program dendritic cells. Expert. Rev. Vaccines. 1: 215–226.

    Article  CAS  Google Scholar 

  12. Oyewumi, M. O., A. Kumar, and Z. Cui (2010) Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert. Rev. Vaccines. 9: 1095–1107.

    Article  CAS  Google Scholar 

  13. Foged, C., B. Brodin, S. Frokjaer, and A. Sundblad (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharmaceut. 298: 315–322.

    Article  CAS  Google Scholar 

  14. Fischer, S., E. Uetz-von Allmen, Y. Waeckerle-Men, M. Groettrup, H. P. Merkle, and B. Gander (2007) The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles. Biomaterials. 28: 994–1004.

    Article  CAS  Google Scholar 

  15. Koppolu, B. P. and D. A. Zaharoff (2013) The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials. 34: 2359–2369.

    Article  CAS  Google Scholar 

  16. Rejman, J., V. Oberle, I. S. Zuhorn, and D. Hoekstra (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377: 159–169.

    Article  CAS  Google Scholar 

  17. Gordon, S., A. Saupe, W. McBurney, T. Rades, and S. Hook (2008) Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J. Pharm. Pharmacol. 60: 1591–1600.

    Article  CAS  Google Scholar 

  18. Kumar, S., A. C. Anselmo, A. Banerjee, M. Zakrewsky, and S. Mitragotri (2015) Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control Release. 220: 141–148.

    Article  CAS  Google Scholar 

  19. Pan, Y., Y. J. Li, H. Y. Zhao, J. M. Zheng, H. Xu, G. Wei, J. S. Hao, and F. D. Cui (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 249: 139–147.

    Article  CAS  Google Scholar 

  20. Gutjahr, A., C. Phelip, A. L. Coolen, C. Monge, A. S. Boisgard, S. Paul, and B. Verrier (2016) Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccines (Basel). 4: 34.

    Article  Google Scholar 

  21. Gordon, S. (2016) Phagocytosis: An immunobiologic process. Immunity. 44: 463–475.

    Article  CAS  Google Scholar 

  22. Cribbs, D. H., A. Ghochikyan, V. Vasilevko, M. Tran, I. Petrushina, N. Sadzikava, D. Babikyan, P. Kesslak, T. Kieber-Emmons, C. W. Cotman, and M. G. Agadjanyan (2003) Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. Int. Immunol. 15: 505–514.

    Article  CAS  Google Scholar 

  23. Heffernan, M. J., D. A. Zaharoff, J. K. Fallon, J. Schlom, and J. W. Greiner (2011) In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials. 32: 926–932.

    Article  CAS  Google Scholar 

  24. Gong, Y., L. Tao, F. Wang, W. Liu, L. Jing, D. Liu, S. Hu, Y. Xie, and N. Zhou (2015) Chitosan as an adjuvant for a Helicobacter pylori therapeutic vaccine. Mol. Med. Rep. 12: 4123–4132.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an Incheon National University Research Grant in 2016.

The authors declare that they have no competing interests. All animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of the Incheon National University (INU-ANIM-2018-02) and no informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong Hee Hwang.

Additional information

Availability of Data and Material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Ryu, Y.C., Wang, HM.D. et al. Optimally Fabricated Chitosan Particles Containing Ovalbumin Induced Cellular and Humoral Immunity in Immunized Mice. Biotechnol Bioproc E 25, 681–689 (2020). https://doi.org/10.1007/s12257-020-0004-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0004-y

Keywords

Navigation